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Hybrid Intelligent Systems for

Industrial Data Analysis

Arthur K. KORDON,

Abstract—A novel approach for industrial data analysis based on
integration of three key computational intelligence approaches
(genetic programming, analytical neural networks, and support
vector machines) is proposed. The developed empirical models
have goed generalization capabilities, explicit input/output
relationships, . self-assessment capabilities, and low
implementation and maintenance cost., The proposed approach
has been implemented in several industrial applications in The
Dow Chemical Company.

Ifndex  Terms—Hybrid  intelligent
programming, support vector machines,
inferential sensors

systemns, genetic
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[ INTRODUCTION

RID intelligent systems are based on the effective
synergy among several Al approaches like symbolic
knowledge based systems, fuzzy systems, neural
networks, and genetic algorithms [1]. Although the various
approaches have their own strengths and specific application
areas, very often they are insufficient to resolve real industrial
problems. A typical case is one of the popular industrial
applications of neural networks as soft sensors. Soft (or
inferential) sensors assume that there is an empirical
relationship between some easily measured and continuously
available process variables and some critical parameters
related to process quality like molecular distribution. Since the
early 90s thousands of soft sensors have been applied in
different areas of manufacturing [2]. However, along with the
benefits that soft sensors have shown in different industrial
conditions, several performance and long-term operation
issues have appeared. Most of the preblems are related to
some limitations that are typical for soft sensors based on
neural nets. Due to their sometimes ineffective, non-
parsimonious structure and poor generalization capability
outside the range of training data, their performance is very
sensitive to specific process conditions. As a result of this
reduced robustness there is a necessity of frequent re-training.
The final effect of all of these problems is an increased
maintenance cost and gradually decreased performance and
credibility.

This example illustrates the negative impact of some
limitations, specific to a selected approach, when applied to
diverse industrial problems. It also shows the need for
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effective integration of various intelligent systems techniques
in order to deal with the increased complexity of real world
applications.

The first wave of hybrid intelligent systems, developed in
the early 90s, is based on the key ingredients of soft
computing (expert systems, fuzzy logic, neural networks, and
genetic algorithms). The different mechanism for fusion,
transformation, and integration of these techniques as well as
the benefits of the hybrid intelligent systems are discussed in
f1], [3], and the contemporary state of the art is given in [4].

Recently, several new intelligent systems approaches have
shown remarkable theoretical growth and potential for solving
complex industrial problems. Stacked analytical neural
networks (internally developed in The Dow Chemical
Company) allow very fast model development of
parsiigonious  black-box models with confidence limits.
Genetic programming (GP) can generate explicit functional
solutions that are very convenient for direct on-line
implementation in the existing process information and
contral systems [5]. Support vector machines (SVM) give
tremendous opportunities for building empirical models with
very good generalization capability [6].

These approaches are the basis of the second wave of
hybrid intelligence systems. A novel methodology for
integration of stacked analytical neural networks, GP, and
SVM into a hybrid intelligent system is proposed in the paper.
The integrated methodology amplifies the advantages of the
individual techniques, significantly reduces the development
time, and ‘delivers robust empirical models with low
maintenance cost. The advantages of the proposed
methodology have been demonstrated in several successful
applications in The Dow Chemical Company.

II. REQUIREMENTS FOR SUCCESSFUL INDUSTRIAL DATA
ANALYSIS

If the goal of purely academic data analysis can be
simplistically defined as “to transfer data into knowledge”, the
abjective of industrial data analysis is “to transfer data into
value”. Since the economics is explicitly included in the
objective function, the strategy for industrial data analysis is
based on factors like minimizing modeling cost and
maximizing data analysis efficiency under broad range of
operating conditions. An obvious result of this strategy is the
increased efforts in robust empirical model building, which is
very often at the economic optimum,. Another consequence of



the economically-driven industrial data analysis is the
tendency to accelerate fundamental model building process by
reducing the hypothesis search space with symbolic regression
or high throughput design of experiments.

The key issue to implement productively the strategy is to
develop a consistent methodology that effectively combines
different modeling approaches to deliver high quality models
with minimal efforts and maintenance. The main requirernents
toward a successful industrial data analysis can be defined as
follows:

1) Robust, fast, and cost effective development process

The assumption is that the derived models from the data
analysis have to be more effective than the alternative
approaches (hardware semsor design or fundamental model
building). Of special importance is the requirement to
significantly reduce the development time while improving
the consistency and performance of delivered empirical
models. Another critical factor is to make the development
process user-friendly with minimal tuning parameters and
specialized knowledge,

2} Low sensitivity fo process changes

Process changes driven by different operating regimes,
equipment upgrades, or product demand fluctuations are more
of a rule than an exception. It is unrealistic to expect that all
the variety of process conditions will be captured by the
training data and reflected in the developed empirical or
fundamental models. The potential solution is in modeling
approaches with better extrapolation capabilities at least 20 %
outside the training range.

3) Performance self~assessment capability

Usnally the models derived from the industrial data analysis
infer the most critical parameters in industrial processes and as
such require estimates with a very high level of reliability. It is
necessary to include elements of self-assecssment of prediction
quality. A prospective approach is to use combined predictors
[71 and their statistics as a confidence indicator of the model’s
performance.

4) Low cost of ownership and maintenance

The experience from “classical” neural net-based soft sensors
shows that the lion share of maintenance cost is in frequent-re-
training and especially in model re-design. Fhe expectation is
that by using non-black-box models with increased robustness
the need for re-training will be significantly reduced. Another
factor that contributes to cost of ownership reduction is the
ease of on-line implementation. Of special interest are the
explicit functional models, generated by GP. They are well
understood by process engineers, directly applicable in the
control system, and do not require specialized knowledge for
maintenance.

III. SELECTED APPROACHES FOR DEVELOPMENT OF HYBRID

INTELLIGENT SYSTEMS

It is very difficult to satisfy the defined requirements by a
specific soft computing techmque only. However, several
intelligent systems approaches can effectively resolve somie
specific issues and become the building blocks of an
integrated methodology for hybrid intelligent systems
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development. Of special interest are the following three
approaches — analytical neural nets, support vector machines
(SVM), and genetic programming (GP).

A. Analytical Neural Networks

Analytical neural networks are based on a collection of
individual, feedforward, single layer neural networks where
the weights of the input to hidden layer have been initialized
according to a fixed distribution such that all hidden nodes are
active. The weights of the hidden to output layer can then be
calculated directly using least squares. Advantages of this
method are: it is fast and each neural network has a well
defined, single, global optimum. Each of these networks have
a known Vapnik-Chernovenkis (VC) dimension, seo
collections with a given complexity can be developed and
optimum use can be made of statistical learning theory. Time
delays between inputs arc handled through convolution
functions. In addition, the use of a collection of networks
gives more robust models that include confidence limits based
on the standard deviation of stacked neural nets.

Analytical neural networks contribute to the hybrid
intelligent systems development process by allowing an
extensive nonlinear sensitivity analysis and input feature
selection. They allow for a fast feasibility test of the mode!?
development process and they deliver models that have
confidence limits associated with predicted outputs.

B. Support Vector Machines

Support vector machines have become an active field of
research in recent years. This type of learning machine
implements the Structural Risk Minimization principle, which
has its foundation in statistical learning theory and is
particularly useful for learning with smail sample sizes [6].
One of the key features is the use of kernel functions. This
enables the method, not only to use non-linear mappings of
the input data, but also overcomes the curse of dimensionality.
Furthermore, through the introduction of a special loss
funiction, the e-insensitive loss, the model is defined in terms
of a subset of the learning data, called the support vectors.
Varying the size of e influences the number of support vectors
and therefore allows direct control over the complexity of the
model.

The SVM method is a very robust method and has a unique
contribution to the hybrid intelligent systems development by
means of automatic outlier and novelty detection. The fact that
the SVM model is a sparse representation of the learning data
allows the extraction of a condensed data set based. on the
support vectors. Finally, by using certain types of kernels, the
extrapolation capabilities of the model can be increased
dramatically, especially by incorporating prior information
[8]. All these features combined pave the way to the
development of robust empirical models.

C. Genetic Programming

The third approach of interest to hybrid intelligent systems
development is GP with its capability for symbolic regression



[5]. GP-generated symbolic regression is a result of simulation
of the natural evolution of numerous potential mathematical
expressions. The final results is a list of “the best and the
brightest™ analytical forms according to the selecting objective
function. Of special importance to industry are the following
unique features of GP[9]:

- no a priori modeling assumptions

- derivative-free optimization

- few design parameters

- natural selection of the most important process inputs
- parsimonious analytical functions as a final result.

The last feature has double benefit. On one hand, a simple
empirical model often has better generalization capability,
increased robustness, and needs less frequent re-training. On
the other hand, process engineers and developers prefer to use
non-black box empirical models and are much more open to
take the risk 1o implement models based on functional
relationships. An additional advantage is the low
implementation cost of such type of models. It can be applied
directly into the existing Distributed Control Systems (DCS)
avoiding additional specialized software packages, typical for
neural net-based solutions.

At the same time there are still significant challenges in
implementing empirical models generated by GP: function
generation with noisy industrial data, dealing with time
delays, sensitivity analysis of large data sets, to name a few.
Of special importance is the main drawback of GP — the slow
speed of model development due to the inherent high
computational requirements of this method. For real industrial
applications the calculation time is in order of days, even with
the current high-end PCs.

IV. INTEGRATED METHODOLOGY FOR HYBRID INTELLIGENT

SYSTEMS DEVELOPMENT

The objectives of the proposed integrated methodology are to
satisfy the defined criteria for successful industrial data
analysis, i.e., to reduce development time, 0 deliver a model
with the best generalization capability, and te minimize the
implementation and maintenance cost. The main blocks of the
methodology and the related process of data reduction are
shown inFig 1.

The main purpose of the first main block is to reduce the
number of inputs to those with the highest sensitivity toward
the output. Another objective is to test via simulation the
hypothesis whether some form of nonlinear relationship
between the selected inputs and the output exists. This is a
critical point in the whole methodology, because if a neural
net model cannot be built, the empirical medel development
process stops here. The conclusion in this case could be that if
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Fig. 1 Main blocks of an integrated methodology for hybrid intelligent
systems development.

a universal approximator, like a neural net, cannot capture a
nonlinear relationship, there would be no basis for variable
dependence and no need to look for other methods. The
sensitivity analysis is based on stacked analytical neural nets.
A big advantage of this type of neural nets is the reduced
development time. Within a couple of hours, the most
sensitive inputs are selected, the performance of the best
neural net models is explored, and the data for the
computationally intensive symbolic regression (GP-function
generation) step is prepared. Typically, thirty stacked neural
nets are used to improve generalization and estimate neural
net model agreement error. This step begins with the most
complex structure of all possible inputs. During the sensitivity
analysis, decreasing the number of inputs, gradually reduces
the initial complex structure. The sensitivity of each structure
is the average of the calculated derivatives on every one of the
stacked neural nets. The procedure performs automatic



elimination of the least significant inputs and generates a
matrix of input sensitivity vs. input climination.

Another important task performed by the analytical neural
networks is to deal with time delays. The classical approach to
handle time series by neural nets is to add additional inputs for
the previous time steps [10}. Unfortunately, this techmique
increases the dimensionality of the neural net significantly.
This increase in the dimensionality of the input vectors has a
large impact on the number of required data points for proper
model identification. The problem is even bigger in the case of
GP meodeling. Therefore, it would be desirable to include
information from previous time-steps without increasing the
dimensionality of the input to the network. This can be
achieved by performing a convolution on the input using an
appropriately shaped function. As a result of the first block of
the integrated methodology, the size of the full data set is
reduced to the number of the most sensitive inputs.

The purpose of the next block, based on SVM, is to further
reduce the size of the data set to only those data points that
represent the substantial information about the nonlinear
model. Qutliers” detection is the first task in this process. For
outliers detection, we make usc of the fact that the data points
containing important information are identified by the SVM
method as support vectors. When the weight of a data point is
non-zero, it is a support vector. The value of a support vector's
weight factor indicates to what extent the corresponding
constraint is violated. Non-zero weight factors hitting the
upper and lower boundary indicate that their constraints are
very difficult to satisfy the optimal solution. Such data points
are often so unusval with respect to the rest of the samples,
that they might be considered as outliers. An outlier detection
tool, using the SVM method, typically constructs several
models of varying complexity. Data points with a high
frequency of weight values on the boundaries are assumed to
be outliers.

One of the main advantages of using SVM as a modeling
method is that the user has direct control over the complexity
of the model (i.c, the number of support vectors). The
complexity can be controlled implicitly or explicitly. The
implicit ‘method controls the number of support vectors by
controlling the acceptable noise level. To explicitly control the
number of support vectors, one can either control the ratio of
support vectors or the percentage of non-support vectors. In
both cases, a condensed data set that reflects the appropriate
level of complexity is extracted for effective symbolic
Tegression, )

An additional option in this main block is to deliver an
empirical model based on SVM. Some recent results show
[8], that SVM models based on mixed global and local kernels
have very good extrapolation features. If an empirical model,
generated by GP does not have acceptable performance
outside the range of training data, the SVM-based inferential
model is a viable on-line solution.

The final block of the integrated methodology for hybrid
intelligent systems development uses the GP approach to
search for potential analytical relationships in a condensed
data set of the most sensitive inputs. The previous steps
significantly reduce the search space and the effectiveness of
GP is considerably improved. The final result from the
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symbolic regression is a list of several analytical functions and
subequations that satisfy the best solution according to a
defined objective function. The analytical function selection
for the final empirical model is still more of an art than a well-
defined procedure. Very often the most parsimonious solution
is not acceptable due to specific manufacturing requirements.
It is preferable to deliver several potential functions with
different levels of complexity and let the final user make the
decision. The generalization capabilities of each empirical
model are verified for all possible data sets. Of special
importance is the performance outside the training range. It is
also possible to design a model agreement-type confidence
indicator based on stacked symbolic predictors.

V. APPLICATION AREAS

The potential for value creation from effective industrial
data analysis based on hybrid intelligent systems is enormous.
Some of the key application areas, explored recently in The
Dow Chemical Company are as follows:

A. Robust Soft Sensors

Some of the critical parameters in chemical processes are
not measured on-line (composition, molecular distribution,
density, viscosity, etc.) and their values are captured either by
lab samples or off-line analysis. However, for process
monitoring and quality supervision the response time of these
measurements with low frequency (several hours, even days)
is very slow. When the critical parameters are not available
on-line in situations with alann showers due to complex root
causes the negative impact could be significant and eventually
could lead to shutdown. One of the approaches to address this
issue is through development and installation of expensive
hardware on-line analyzers. Another solution is by using
robust soft sensors developed by the proposed methodology
[9]. An example of a robust soft sensor for emission
estimation is given in the next section,

B. Automated Operating Discipline

Operating discipline is a key factor for competitive
manufacturing. Its main goal is to provide a consistent
process for handling all possible situations in the plant. 1t is
the biggest knowledge repository for plant operation.
However, this documentation is static and is detached from
the real-time data of the process. The missing link between the
dynamic nature of process operation, and the static nature of
opetating discipline documents is traditionally carried out by
the operating personnel. However, this makes the existing
operating discipline process very sensitive to hwman errors,
competence, inattention, or lack of time,

One approach to solving the problems associated with
operating discipline and making it adaptive to the changing
operating environment is to use real-time hybrid intelligent
systems. Such type of a system was successfully implemented
in a large-scale chemical plant at The Dow Chemical
Company [11]. It is based on integrating experts’ knowledge
with soft sensors and fuzzy logic. The hybrid system runs in
parallel with the process; it detects and recognizes problem
situations automatically in real-time; it provides a user-
friendly interface so that operators can readily handle complex



alarm situations; it suggests the proper corrective actions via a
hyper-book; and it facilitates effective shift-to-shift
communication.

C. Accelerated Fundamental Model Building

-The large potential of penetic programming (GP)-based
symbolic regression for accelerated fundamental model
building is demonstrated in a case study for structure-property
relationships [12]. The gencrated symbolic solution is similar
o the fundamental model and is delivered in significantly less
time. Additional benefits include identifying key variables and
transforms, enabling rapid testing of a new physical
hypothesis, and the reduction of the number of experiments
for model validation. By optimizing the capabilities for
obtaining fast and reliable GP-generated functional solutions
in combination with the fundamental modeling process, a real
breakthrough in the speed of new product development can be
achieved.

D. Effective Design of Experiments (DOE)

The integration of GP with DOE has the potential to
improve the effectiveness of empirical model building by
saving time and resources in situations where experimental
runs are quite expensive or technically unfeasible because of
extreme experimental conditions. GP was successfully
applied to the development of wvariable transforms that
linearize the response in statistically designed experiments for
a chemical process in The Dow Chemical Company [13].

E. Empirical Emulators

Empirical emulators mimic the performance of first
principle models by using various data-driven modeling
techniques. A key feature of empirical emulators is that the
training data for empirical model building is generated by
design of experiments from first principle models called
simulators. This allows a high degree of freedom for
development of reliable data-driven models. The most obvious
scheme for implementation of empirical emulators is as
accelerator of computational time for fundamental models (the
gain is 10° — 10 times faster). Another possible scheme is to
use the empirical emulator as an estimator of fundamental
model’s performance. Of special importance to on-line
optimization is the scheme of the empirical emulator as an
integrator of different types of fundamental models (steady-
state, dynamic, fluid, kinetic, thermal, etc). The results from a
case study of an emulator implementation are given in [14].

VI

Soft sensors for emission estimation are one of the most
popular application areas and a viable alternative to hardware
analyzers. Usually an intensive data collection campaign is
required for empirical model development. However, during
on-line operation the output measurement is not available and
some form of scft sensor performance self-assessment is
highly desirable. Since it is unrealistic to expect that all
possible process variations will be captured during the data
collection campaign, a soft sensor with increased robustness is
required. Such type of soft sensors, based on the proposed

INDUSTRIAL APPLICATION

integrated methodology, was developed and implemented in
one of The Dow Chemical Company plants in Freeport, TX.
The key results from implementation of the main blocks are as
follows:

A representative data set from eight potential process input
variables and the measured emission as output included 251
data points for training and 115 data points for testing. The
test data is 140% outside the range of the training data, which
by itself is a severe challenge for the extrapolation capabitity
of the model. As a result of the nonlinear sensitivity analysis
based on the analytical neural networks, the data set was
reduced to five relevant inputs. The performance of such type
of potential model with five inputs, 10 neurons in the hidden
layer, and a model disagreement indicator based on the
standard deviation of 30 stacked predictors is shown in Fig. 2.
The possibility for nonlinear model building and the potential
of the model agreement indicator for performance self-
assessment are clearly demonstrated.
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Fig. 2. Performance of a stacked anaiytical neural net model with model
agreement indicator,

The extraordinary extrapolation capability of a potential
empirical model based on SVMs is shown in Fig.3. The model
is based on a mixture of a second order polynemial global
kernel and an RBF local kérnel with width of 0.5 in a ratio of
0.95. An additional benefit from this phase of the integrated
methodology is that the model is based on 34 support vectors
only.

As a result, the representative data set for deriving the final
symbolic regression model is drastically reduced to only
8.44% of the original training data sct. As it is shown in Fig.
4, the performance of the GP-generated model, based on the
condensed data set, is comparable with the other two
approaches.

The initial functional set for the GP includes: {addition,
subtraction, multiplication, division, square, change sign,
square root, natural logarithm, exponential, and power}.
Function generation takes 20 runs with population size of 500,
number of generations of 100, number of reproductions per



generation of 4, probability for function as next node of 0.6,
parsimony pressure of 0.05 and correlation coefficient as
optimization criterion. Eight symbolic predictors with
different number of inputs and nonlinear functions were
sclected in a stacked model. The average value is used as the
soft sensor prediction and the standard deviation is used as a
model disagreement indicator. The soft sensor for emission
estimation is in operation in Freeport, TX since August 2001.
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Fig. 3. Performance of an SVM model using a mixture of pelynomial and
RBF kernels.

Fig. 4. Performance of a Stacked Symbolic Regression model with model
agreement indicator,

VII. CONCLUSION

A mnovel imegrated methodology for industrial data analysis
has been defined and successfully implemented in various

applications in The Dow Chemical Company. The proposed

- hybrid methodology is based on using different computational
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intelligence components (stacked analytical neural nets,
genetic programming, and support vector machines). The
driving force bchind the need for integration is the
requirement of industry for empirical models with increased
robustness and reduced development time. The illustrated
application shows one of the main advantages of the proposed
methodology — significant reduction of the training daia set by
nonlinear sensitivity analysis and support vector machines.
The final on-line solution, generated by GP, is based on a very
compact and robust stacked empirical model with self-
assessment capability that requires minimal re-training and
maintenance cost. The success of this application in a complex
industrial environment, as well as similar implementations in
the arca of automating operating discipline, accelerating
fundamental model building, empirical emulators, and
effective DOE, demonstrate the great potential of the
integrated approach for solving difficult industrial problems.
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