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1. Introduction  

Applications involving wheeled mobile robots have been growing significantly in recent 
years thanks to its ability to move freely through space work, limited only by obstacles. 
Moreover, the wheels allow for greater convenience of transportation in environments plans 
and give greater support to the static robot. 
In the context of autonomous navigation of robots we highlight the localization problem. 
From an accumulated knowledge about the environment and using the current readings of 
the sensors, the robot must be able to determine and keep up its position and orientation in 
relation to this environment, even if the sensors have errors and / or noise. In other words, 
to localize a robot is necessary to determine its pose (position and orientation) in the 
workspace at a given time. 
Borenstein et al. (1997) have classified the localization methods in two great categories: 
relative localization methods, which give the robot’s pose relative to the initial one, and 
absolute localization methods, which indicate the global pose of the robot and do not need 
previously calculated poses. 
As what concerns wheel robots, it is common the use of encoders linked to wheel rotation 
axes, a technique which is known as odometry. However, the basic idea of odometry is the 
integration of the mobile information in a determined period of time, what leads to the 
accumulation of errors (Park et al., 1998). The techniques of absolute localization use 
landmarks to locate the robot. These landmarks can be artificial ones, when introduced in 
the environment aiming at assisting at the localization of the robot, or natural ones, when 
they can be found in the proper environment. 
 
It´s important to note that, even the absolute location techniques are inaccurate due to noise 
from the sensors used. Aiming to obtain the pose of the robot with the smallest error 
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possible an efficient solution is to filter the information originated by its sensors. A 
mathematical tool to accomplish this task is the Kalman filter. 
Still on autonomous robots, a key attribute is a reliable perception of the world. Besides the 
reliability for the general acceptance of applications, the technologies used must provide a 
solution at a reasonable cost, that is, the components must be inexpensive. A solution is to 
use optical sensors in the robots to solve environment perception problems. 
Due to the wide use of personal digital cameras, cameras on computers and cell phones, the 
price of image sensors has decreased significantly, making them an attractive option. 
Furthermore, the cameras can be used to solve a series of key problems in robotics and in 
other automatized operations, as they provide a large variety of environmental information, 
use little energy, and are easily integrated into the robot hardware. The main challenges are 
to take advantage of this powerful and inexpensive sensor to create reliable and efficient 
algorithms that can extract the necessary information for the solution of problems in 
robotics. 
The system that will be presented shows a localization technique equipped for flat and 
closed environments with floor lines. This is not a very limiting prerequisite, as many 
environments such as universities, shopping malls, museums, hospitals, homes and airports, 
for example, have lines as floor components. 
The algorithm used is based on the Extended Kalman Filter (EKF), to allow the robot to 
navigate in an indoor environment using odometry and preexisting floor. The lines are 
identified using the Hough transform. The prediction phase of EKF is done using the 
geometric model of the robot. The update phase uses the parameters of the lines detected by 
the Hough transform directly in Kalman’s equations without any intermediate calculation 
stage. 
The use of lines is justified as follows: a) lines can be easily detected in images;  b) floor lines 
are generally equally well spaced, reducing the possibility of confusion; c) a flat floor is a 2D 
surface and thus there is a constant and easy-to-calculate conversion matrix between the 
image plane and the floor plane, with uncertainties about 3D depth information; and d) after 
processing the number of pixels in the image that belong to the line is a good reliability 
measure of the landmark detected. 
Literature shows works using distance measures to natural landmarks to locate the robot. 
Bezerra (2004) used in his work the lines of the floor composing the environment as natural 
landmarks. Kiriy and Buehler (2002) have used extended Kalman Filter to follow a number 
of artificial landmarks placed in a non-structured way. Launay et al. (2002) employed ceiling 
lamps of a corridor to locate the robot. Odakura et al. (2004) show the location of the robot 
using Kalman filter with partial observations. More recent studies show a tendency to solve 
the problem of simultaneous localization and mapping - SLAM. Examples of work in this 
area: Amarasinghe et al. (2009), Marzorati et al. (2009) and Wu et al. (2009). 

 
2. Proposed System and Theoretical Background 
The system proposed in this study presents an adequate technique to localization a mobile 
robot in flat and closed environments with pre-existing floor lines. The algorithm used is 
based on Extended Kalman Filter (EKF) to allow the robot to navigate in an indoor 
environment by fusing odometry information and image processing. The prediction phase 
of the EKF is done using the odometric model of the robot and the update phase uses the 

 

parameters of the lines detected by Hough directly in the Kalman equations without any 
intermediate calculation stage. Figure 1 shows the scheme of the proposed system. 

 

 
Fig. 1. Proposed System. 

 
2.1 Kalman Filter 
In 1960, Rudolph Emil Kalman published a famous paper describing a recursive process for 
solving problems related to linear discrete filtering (Kalman 1960). His research has 
provided significant contributions by helping to establish solid theoretical foundation in 
many areas of the engineering systems. 
With the advance computing, the Kalman filter and its extensions to nonlinear problems 
represent a product widely used in a modern engineering. Next will be described in 
summary form, the Kalman filter applied to linear and nonlinear systems. 

 
2.2 Discrete Kalman Filter - DKF 
Aiube et al. (2006) define the Kalman filter as a set of mathematical equations that provides 
an efficient recursive process of estimation, since the square error of estimation is 
minimized. Through the observation of the variable named " observation variable" another 
variable, not observable, the "state variable" can be estimated efficiently The modeling of the 
Discrete Kalman Filter-DKF presupposes that the system is linear and described by the 
model of the equations of the System (1): 
 

 � �� � ������  � ������ � ����
�� � ���� � ��                                   (1) 

 
in which s є Rn is the state vector; u є Rl is the vector of input signals; z є Rm is the vector of 
measurements; the matrix n x n, A, is the transition matrix of the states; B, n x l, is the 
coefficient matrix on entry; matrix C, m x n, is the observation matrix;  γ є Rn represents the 
vector of the noises to the process and  є Rm the vector of measurement errors. Indexes  
t and t-1 represent the present and the previous instants of time. 
The Filter operates in prediction-actualization mode, taking into account the statistical 
proprieties of noise. An internal model of the system is used to updating, while a retro-
alimentation scheme accomplishes the measurements. The phases of prediction and 
actualization to DKF can be described by the Systems of Equations (2) and (3) respectively. 
 

 ���� � �� ����  � ������          
Σ�� � ��������� � ��                 (2) 
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�� � ��������������� � �����
�� � ��� � ����� � �� �� ��    
�� � �� � ��������                  

                         (3) 

 
The Kalman Filter represents the state vector st by its mean μt and co-variance Σt. Matrixes 
R, n x n, and Q, l x l, are the matrixes of the covariance of the noises of the process (γ) and 
measurement () respectively, and matrix K, n x m, represents the gain of the system. 

 
2.3 Extended Kalman Filter - EKF 
The idea of the EKF is to linearize the functions around the current estimation using the 
partial derivatives of the process and of the measuring functions to calculate the estimations, 
even in the face of nonlinear relations. The model of the system to EKF is given by the 
System (4): 

 ��� � ������� ����� � ��
�� � ����� � ��                           (4) 

 
in which g(ut-1; st-1) is a non-linear function representing the model of the system, and h(st) is 
a nonlinear function representing the model of the measurements. Their prediction and 
actualization phases can be obtained by the Systems of Equations (5) and (6) respectively. 
 

           ���� � ������� �����          
Σ�� � ��������� � ��

                              (5) 
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�� � ��������������� � �����
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                                          (6) 

 
The matrix G, n x n, is the jacobian term linearizes the model and H, l x n, is the jacobian 
term linearizes the measuring vector. Such matrixes are defined by the        Equations (7) e 
(8). 
 �� � �������������

�����
                      (7) 
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                               (8) 

 
3. Modeling 

3.1 Prediction phase: process model 
Traditionally, the behavior of the robot motion is described by its dynamic model. Modeling 
this type of system is quite complex because there are many variables involved (masses and 
moments of inertia, friction, actuators, etc.). Even in the most elaborate systems cannot 
faithfully portray the behavior of the robot motion. 
A classic method used to calculate the pose of a robot is the odometry. This method uses 
sensors, optical encoders, for example, which measure the rotation of the robot’s wheels. 

 

Using the cinematic model of the robot, its pose is calculated by means of the integration of 
its movements from a referential axis. 
As encoders are sensors, normally their reading would be implemented in the actualization 
phase of the Kalman Filter, not in the prediction phase. Thrun et al. (2005) propose that 
odometer information does not function as sensorial measurements; rather they suggest 
incorporating them to the robot’s model. In order that this proposal is implemented, one 
must use a robot’s cinematic model considering the angular displacements of the wheels as 
signal that the system is entering in the prediction phase of the Kalman Filter. 
Consider a robot with differential drive in which the control signals applied and its 
actuators are not tension, instead angular displacement, according to Figure 2. 
 

 
Fig. 2. Variables of the kinematic model. 
 
With this idea, and supposing that speeds are constant in the sampling period, one can 
determine the geometric model of the robot’s movement (System 9). 
 

 �
�� � ���� � ��

�� �sin����� � ��� � sin�������
�� � ���� � ��

�� �cos����� � ��� � ����������
�� � ���� � ����������������������������������������������������������

    (9) 

 
The turn easier the readability of the System (9) representing the odometry model of the 
robot, two auxiliary variables have been employed ΔL and Δθ. 
 

 ��� � ������ � ��������
�� � ������ � ��������                (10) 

 
in which ΔθR is the reading of the right encoder and functions relatively the robot by means 
of the angular displacement of the right wheel; ΔθL is the reading of the left encoder and 
functions as a displacement applied to the left wheel; b represents the distance from wheel 
to wheel of the robot; rL and rR are the spokes of the right and the left wheels respectively. 
It is important to emphasize that in real applications the angular displacement effectively 
realized by the right wheel differs of that measured by the encoder. Besides that, the 
supposition that the speeds are constant in the sampling period, which has been used to 
obtain the model 9, is not always true. Hence, there are differences between the angular 
displacements of the wheels (���� and ����) and those ones measured by the encoders (ΔθR 
and ΔθL). This difference will be modeled by a Gaussian noise, according to System (11).  
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 ����� �  ��� � ��
���� �  ��� � ��

                  (11) 

 
It is known that odometry possesses accumulative error. Therefore, the noises         εR and εL 
do not possess constant variance. It is presumed that these noises present a proportional 
standard deviation to the module of the measured displacement. With these new 
considerations, System (9) is now represented by System (12): 
 

 

��
�
�� �� � ���� � ���

��� �s������� � ���� � s���������
�� � ���� � ���

��� �cos����� � ���� � ����������
�� � ���� � ���                                                        

            (12) 

in which: 
 

 ���� � ������� � ���������
��� � ������� � ���������                                     (13) 

 
One should observe that this model cannot be used when ��� = 0. When it occurs, one uses 
an odometry module simpler than a robot (System 14), obtained from the limit of System 
(12) when ��� →0. 
 

 �
�� � ���� � ��� cos������
�� � ���� � ���s�� ������
�� � ����                             

                             (14) 

 
Thrun’s idea implies a difference as what concerns System (4), because the noise is not 
audible; rather, it is incorporated to the function which describes the model, as       System 
(15) shows: 
 

 ��� � ������� ����� �����
�� � ����� � ��                          (15) 

 
in which εt = [εR    εL]T is the noise vector connected to odometry. 
 
 
It is necessary, however, to bring about a change in the prediction phase of the System (6) 
resulting in the System (16) equations: 
 

 ���� � ���� � ������� ����� ��
Σ�� � ��Σ������ � �������                         (16) 

 
in which, M, l x l, is the co-variance matrix of the noise sensors (ε) and V, n x m, is the 
jacobian mapping the sensor noise to the space of state. Matrix V is defined by equation (17). 
 
 �� � ���������������

�����
                 (17) 

 

Making use of the odometry model of the robot described in this section and the definitions 
of the matrixes used by the Kalman Filter, we have: 
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�          (18) 
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�
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   �� sin���� � ����cos���� � cos �������      ��� sin���� � ����cos���� � cos �������
���� �����

�(19) 

 

 �� � ���|����| 0
0 ��|����|�                          (20) 

 
Elements m11 and m22 in the Equation (20) represent the fact that the standard deviations of 
εR and εL are proportional to the module of the angular displacement. The variables k1, k2 
and k3 are given by System (21), considering rd = re = r. 
 
 

 

��
�
��

�� �  ������������
������������            

�� � ���� � ������������
�

�� � �����
������������������    

                       (21) 

 
3.2 Update phase: Sensor Model 
The landmarks adopted in this work are lines formed by the grooves of the floor in the 
environment where the robot navigates. The system is based on a robot with differential 
drive and a fixed camera, as in Figure 3. 
 

 
Fig. 3. Robotic System. 
 
Due to the choice of the straight lines as landmarks, the technique adopted to identify them 
was the Hough transform [Hough, 1962]. This kind of transform is a method employed to 
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Making use of the odometry model of the robot described in this section and the definitions 
of the matrixes used by the Kalman Filter, we have: 
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Elements m11 and m22 in the Equation (20) represent the fact that the standard deviations of 
εR and εL are proportional to the module of the angular displacement. The variables k1, k2 
and k3 are given by System (21), considering rd = re = r. 
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3.2 Update phase: Sensor Model 
The landmarks adopted in this work are lines formed by the grooves of the floor in the 
environment where the robot navigates. The system is based on a robot with differential 
drive and a fixed camera, as in Figure 3. 
 

 
Fig. 3. Robotic System. 
 
Due to the choice of the straight lines as landmarks, the technique adopted to identify them 
was the Hough transform [Hough, 1962]. This kind of transform is a method employed to 
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identify inside a digital image a class of geometric forms which can be represented by a 
parametric curve [Gonzales, 2007]. As what concerns the straight lines, a mapping is 
provided between the Cartesian space (X ,Y) and the space of the parameters    (ρ, ) where 
the straight line is defined. 
Hough defines a straight line using its common representation, as Equation (22) shows, in 
which parameter (ρ) represents the length of the vector and () the angle this vector forms 
with axis X. Figure 4 shows the geometric representation of these parameters. 
 

� � �� ������ � �� ��� ���    (22) 

 
Fig. 4. Line parameters: ρ and α. 
 
The robot navigates in an environment where the position of the lines in the world is known 
and every step identifies the descriptors of the lines contained in the image  ρI e I. These 
descriptors are mapped to the plane of a moving coordinate system and obtaining ρM e M. 
This transformation is easy and relies only on the correct calibration of camera parameters. 
Figure 5 illustrates the coordinate systems used in mathematical deduction of the sensor 
model. 
 

 
Fig. 5. Mobile (M) and Fixed (F) coordinate systems. 
 
We define a fixed coordinate system (F) and a mobile one (M), attached to the robot, both 
illustrated in Figure 5. The origin of the mobile system has coordinates (��� � ��� ) in the fixed 
system. ���   represents the rotation of the mobile system with respect to the fixed one. One 
should note that there is a straight relation among these variables (��� � ���� ��� ) and the 
robot’s pose (��� ��� ��), which is given by Equations (23). 
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We use the relation between coordinates in the (M) and (F) systems (System 24) and 
Equation (22) in both coordinate systems (Equations 25 and 26). 
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By replacing Equations (24) in Equation (25), doing the necessary equivalences with 
Equation (26) and replacing some variables using Equations (23), we obtain the Systems (27) 
and (28), which represent two possible sensor models h(.) to be used in the filter. To decide 
about which model to use, we calculate both values of �� and use the model which 
generates the value closer to the measured value. 
 

 ��� � �� � �� cos���� � �� sin����         
�� �  �� � �� � �

�                                              (27) 

 

 � �� � ��� � �� cos���� � �� sin����     
�� �  �� � �� � �

�                                              (28) 

 
The sensor model is incorporated into the EKF through the matrix H (Equation 8). 
Representation for H obtained from the System (27) is given by Equation (29) and, using the 
System (28), H is described by Equation (30). 
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4. Image Processing 

4.1 Detection of lines 
Due to the choice of floor lines as landmarks, the technique adopted to identify them was 
the Hough transform [Hough, 1962]. The purpose of this technique is to find imperfect 
instances of objects within a certain class of shapes by a voting procedure. This voting 
procedure is carried out in a parameter space, from which object candidates are obtained as 
local maxima in an accumulator grid that is constructed by the algorithm for computing the 
Hough transform [Bradski and Kaehler, 2008]. 
In our case, the shapes are lines described by Equation (22) and the parameter space has 
coordinates (ρ,). The images are captured in grayscale and converted to black and white 
using the edge detector Canny [Canny, 1986]. Figure 6.a shows a typical image of the floor, 
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Figure 6.b shows the image after applying the Canny detector and Figure 6.c shows lines 
detected by Hough. 
 

a)      b)  
 

c)  
Fig. 6. Image processing. 

 
4.2 From images to the word 
We assume that the floor is flat and that the camera is fixed. So, there is a constant relation (a 
homography A) between points in the floor plane (x, y) and points in the image plane (u, v): 
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The scale factor s is determined for each point in such a way that the value of the third 
element of the vector is always 1. The homography can be calculated off-line by using a 
pattern containing 4 or more remarkable points with known coordinates (see Figure 7.a). 
After detecting the remarkable point in the image, we have several correspondences 
between point coordinates in the mobile coordinate system M and in the image. Replacing 
these points in Equation (31), we obtain a linear system with which we can determine the 8 
elements of the homography matrix A. 
 

a)   b)  
Fig. 7. Calibration pattern. 
 
Once calculated the homography, for each detected line we do the following:          a) using 
the values of (��� ��) in the image obtained by the Hough transform, calculate two point 
belonging to the image line; b) convert the coordinates of these two points to the mobile 

 

coordinate system M using A; c) determine ( ) of the line that passes through these 
two points. 
To verify the correctness of the homography found, we calculated the re-projection error 
using the points detected in the image and their counterparts worldwide. The average error 
was calculated at e = 1.5 cm. To facilitate interpretation of this value, the figure shows a 
circle of e radius drawn on the pattern used. 

 
4.3 Sensor noise 
As it is showed in Figure 3, the camera position used in this work is not parallel to the floor, 
but at a slope. The resulting effect caused by the camera slope can be seen in Figures 6 and 7. 
From experimentation, one observed that existing information at the top of the image 
suffered higher noise if compared to the bottom area, what made us consider that noise 
variance must be proportional to the distance (ρ) of the straight line on the image. Besides, 
one noticed that quality of horizontal lines which appeared on the image was better than 
that of vertical ones, what allowed us to understand that noise variance was also related to 
the straight line angle () on the image. 
If those aspects above are taken into consideration, then the sensor noise variance adopted 
in this work is in accordance with the Equation (22). The values of the constants   a , b and c 
were calculated through experimentation and their values are: a = 0:004, b = 0:3 and c = 45.  
 
     (22) 
 
In this equation, the term [ ] represents the distance proportionality, and the term 
[ ], the angle influence. Figure 8 shows the behavior of the function described by 
Equation (22) using the values of a, b and c already submitted, and given ρ in meters and  
in degrees. 

 
Fig. 8. Noise variance function. 

 
5. Results 

The experiments were carried out using the Karel robot, a reconfigurable mobile platform 
built in our laboratory that has coupled to the structure, a webcam and a laptop for 
information processing (Figure 3). The robot has two wheels that are driven by DC motors 
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built in our laboratory that has coupled to the structure, a webcam and a laptop for 
information processing (Figure 3). The robot has two wheels that are driven by DC motors 
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with differential steering. Each motor has an optical encoder and a dedicated card based on 
a PIC microcontroller that controls local velocity. The cards communicate with the computer 
through a CAN bus, receiving the desired wheel velocities and encoder data. 
To validate the proposed system, results were obtained in two different environments: one 
containing only a pattern of lines and another containing two patterns of lines. The first 
experiment was carried out by making the robot navigate in an environment where there 
are vertical lines on the floor: (I) was command the robot to move forward by 25m, (II) rotate 
90 degrees around its own axis ( III) move forward 5m, (IV) 180 rotate around its own axis 
(V) move forward 5m, (VI) rotate 90 degrees around its axis and, finally, walking forward 
25m. Figure 9 shows the map of the environment and the task commanded to the robot. 
 

 
Fig. 9. Experience 01. 
 
In this experiment, during the full navigation of the robot 1962 images were processed and 
the matching process was successful in 93% of cases. The average observation of each line 
was 23 times. 
In this work the sensors used have different sampling rates. We decided to use the encoders 
reading in a coordinated manner with the image capture. The camera captures images 640 x 
480 (Figure 6) and each image is processed, on average, 180 ms. Figure 10 shows the graphs 
of the acquisition time (image and encoder), processing time and total time of the system, 
including acquisition, processing and calculations of the localization algorithm. The average 
time of acquisition was 50 ms, the processing was 125 ms and the average total time the 
system was 180 ms. The peaks on the graph made themselves available after the first turning 
motion of the robot (II), or after it enters a new corridor with different lighting. 

 
Fig. 10. Times of the system. 

 

About the homography, Figure 7.a shows the pattern that was used at the beginning of the 
experiment to calculate it. The camera was positioned so that it was possible to have a 
viewing angle of about twice the size of the robot. It is important to remember that the 
camera position is such that the image plane is not parallel to the floor plan. Equation (23) 
shows the homography matrix used. 
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�   (23) 

 
Besides the proposed system, another location system was also implemented: location 
system using geometric correction. In this system, every step, the lines are identified and 
used to calculate the robot pose using trigonometry. When there are no lines identified, the 
robot pose is calculated by odometry. Figure 11 shows the trajectories calculated using EKF, 
Geometric Correction and Odometry. It is easy to see that the behavior of the system based 
on Kalman filter (proposed system) was more satisfactory. The final error, measured in-loco, 
was 0.27m to the system using EKF, 0.46m using the geometric correction system and 0.93m 
using only odometry. 
 

 
 

Fig. 11. Trajectories. 
 
As previously mentioned, another experiment was performed in an environment where 
there are two patterns of lines on the floor, horizontal and vertical. In this environment, the 
robot was commanded to move forward for 25m (I), rotate 180 degrees around its axis (II) 
and move forward by 25m (III). Figure 12 shows the position of the lines and controlled the 
robot trajectory. 
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Fig. 12. Experience 02. 
 
In this second experiment, the matching process was successful in 95% of cases. Considering 
the full navigation of the robot, 2220 images were processed and found that in 87% of step 
lines were observed (61% and 26% a line two lines). The final error, measured in-loco was 
lower than that found in Experiment 0.16m and allowed us to infer that for greater precision 
of the proposed system is not enough just a lot of lines in the environment, but rather, they 
are competitors. 

 
6. Conclusions and Perspectives 

This paper presented a localization system for mobile robots using fusion of visual data and 
odometer data. The main contribution is the modeling of the optical sensor made such a 
way that it permits using the parameters obtained in the image processing directly to 
equations of the Kalman Filter without intermediate stages of calculation of position or 
distance. 
Our approach has no pretension to be general, as it requires a flat floor with lines. However, 
in the cases where can be used (malls, museums, hospitals, homes, airports, etc.) when 
compared with another approach using geometric correction was more efficient. 
As future works, we intend: to improve the real-time properties of the image processing 
algorithm, by adopting some of the less time consuming variants of the Hough transform; 
Replace the Kalman Filter by a Filter of Particles, having in view that the latter incorporates 
more easily the nonlinearities of the problem, besides leading with non-Gaussian noises; 
Develop this strategy of localization to a proposal of SLAM (Simultaneous Localization and 
Mapping), so much that robot is able of doing its localization without a previous knowledge 
of the map and, simultaneously, mapping the environment it navigates. 
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Mapping), so much that robot is able of doing its localization without a previous knowledge 
of the map and, simultaneously, mapping the environment it navigates. 
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