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Abstract— This work proposes a SLAM technique based
on Extended Kalman Filter (EKF) to navigate a robot in
an indoor environment using odometry and pre-existing lines
on the floor as landmarks. The lines are identified by using
the Hough transform. The prediction phase of the EKF is
implemented using the odometry model of the robot. The update
phase directly uses the parameters of the lines detected by the
Hough transform without additional intermediate calculations.
Experiments with real data are presented.

I. INTRODUCTION

In the problem of simultaneous localization and mapping

(SLAM), a mobile robot autonomously explores the environ-

ment with its on board sensors, gains knowledge about it,

interprets the scene, builds an appropriate map and localizes

itself relative to this map. The representation of the maps

can take various forms, such as occupancy grids and features

maps. We are interested in the second representation.

Thanks to advances in computer vision and cheaper cam-

eras, vision-based SLAM have become popular [8], [12],

[10]. In the work of Folkesson et al. [6], lines and points were

extracted by image processing and used to solve the SLAM

problem. Chen and Jagath [3] proposed a SLAM method

with two phases. Firstly, high level geometric information,

such as lines and triangles constructed by observed feature

points, is incorporated to EKF to enhance the robustness;

secondly, a visual measurement approach, based on multiple

view geometry, is employed to initialize new feature points.

A classical approach to SLAM is to use Extended Kalman

Filter (EKF) [5], [2]. These SLAM algorithms usually require

a sensor model that describes the robot’s expected observa-

tion given its position. Davison [4] uses a single camera,

assuming a Gaussian noise sensor model whose covariance is

determined by the image resolution. Zucchelii [15] discusse

how to propagate the uncertainty of the camera’s intrinsic

parameters into a covariance matrix that characterizes the

noisy feature positions in the 3D space. Wu and Zang [14]

present a work whose principal focus is on how to model

the sensor uncertainty and build the probabilistic component

of a camera model.

The main challenges in visual SLAM are: a) how to detect

features in images; b) how to recognize that a detected

feature is or is not the same as a previously detected one;

c) how to decide if a new detected feature will or will not

be adopted as a new mark; d) how to calculate the 3D

position of the marks from 2D images; and e) how to estimate

the uncertainty associated with the calculated values. In the

general case, all these aspects have to be addressed. However,

in particular situations, it is sometimes possible to develop

a specific strategy to overcome these difficulties. That is the

proposal of this work.

We present a SLAM technique suitable for flat indoor en-

vironments with lines on the floor. This is not a so restrictive

assumption, since this is the case in many buildings such as

universities, shopping malls, museums, hospitals, homes and

airports, for example. Our approach is not a generic solution

to the SLAM problem but an effective solution for indoor

environments.

Using pre-existing lines as marks, the overall complexity

of the SLAM problem is reduced, since: a) lines can be

easily detected in images; b) lines on the floor are usually

equally spaced well apart, so the possibility of confusion

is reduced; c) as the number of lines in a image is not so

big, every newly-detected line can define a new mark; d) a

flat floor is a 2D surface and then there is a constant and

easily calculable conversion matrix (a homography) between

the image plane and the floor plane, without uncertainties

concerning the 3D depth of points; and e) after processing,

the number of pixels in the image belonging to the line is a

good measure of confidence in the detected mark.

Lemaire & Lacroix [11] proposed the use of 3D lines as

landmarks. They report the following advantages of using

3D lines: first, these primitives are very numerous in indoor

environments; second, in contrast to sparse point maps,

which are only useful for location purposes, a relevant

segmentation map provides information on the structure of

the environment. Also using lines, in this case, vertical, Fu et

al. [7] carried out a study on the fusion of laser and camera

information in an extended Kalman filter for SLAM. In this

work, the lines are extracted from the image using Canny.

Ahn et al. [1] shows a map with characteristics of 3D points

and lines for indoor environments.

Our approach differs from the last three studies since it

uses 2D lines of the environment as landmarks. These lines

are extracted from the images through Hough transform and

mapped to the robot plane by means of homography. The ρ
and α parameters represent the characteristics of each line

and are used in Kalman equations without an intermediary

position or distance calculation stage.
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II. MODELING

A. Extended Kalman Filter - EKF

In this work, the Extended Kalman Filter (EKF) deals with

a system that is modeled by System 1, whose variables are

described in Table II-A. The signals εt and δt are supposed

to be Gaussian white noises with zero mean.

{
st = p(st−1,ut−1,εt−1)

zt = h(st)+δt
(1)

At each sampling time, the EKF calculates the best

estimate of the state vector in two phases: the prediction
phase uses System 2 to predict the current state based on

the previous state and on the applied input signals and

the update phase uses System 3 to correct the predicted

state by verifying its compatibility with the actual sensor

measurements.

{
μ̄t = p(μt−1,ut−1,0)

Σ̄t = GtΣt−1GT
t +VtMtVT

t
(2)

⎧⎪⎨
⎪⎩

Kt = Σ̄tHT
t (Ht Σ̄tHT

t +Qt)
−1

μt = μ̄t +Kt(zt −h(μ̄t))

Σt = (I−KtHt)Σ̄t

(3)

where:

Gt =
∂p(s,u,ε)

∂s

∣∣∣∣
s=μt−1,u=ut−1,ε=0

(4)

Vt =
∂p(s,u,ε)

∂ε

∣∣∣∣
s=μt−1,u=ut−1,ε=0

(5)

Ht =
∂h(s)

∂s

∣∣∣∣
s=μt−1

(6)

In SLAM, besides estimating the robot pose, we also

estimate the coordinates of all landmarks encountered along

the way. This makes necessary to include the landmark

coordinates into the state vector. If ic is the vector of

coordinates of the i-th landmark and there are k landmarks,

then the state vector is:

st =
[

xt yt θt
1cT

t · · · kcT
t

]T
(7)

When the number of marks (k) is a priori known, the

dimension of the state vector is static; otherwise, it grows

up when a new mark is found.

B. Prediction phase: process model

Consider a robot with diferential drive in which ΔθR
and ΔθL are the right and left angular displacement of the

respective wheels, according to Figure 1. Assuming that

the speeds can be considered constant during one sampling

period, we can determine the kinematic geometric model of

the robot’s movement (System 8):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xt =xt−1+
ΔL
Δθ

[sin(θt−1+Δθ)− sin(θt−1)]

yt =yt−1− ΔL
Δθ

[cos(θt−1+Δθ)− cos(θt−1)]

θt =θt−1+Δθ

(8)

in which: {
ΔL = (ΔθRrR +ΔθLrL)/2

Δθ = (ΔθRrR−ΔθLrL)/b
(9)

where ΔL and Δθ are the linear and angular displacement

of the robot; b represents the distance between wheels and

rR and rL are the radii of the right and the left wheels,

respectively. When Δθ→ 0, another system, obtained from

the limit of System 8, must be used.

Adopting the approach advocated by Thrun et al. [13],

we consider odometric information as input signals to be

incorporated to the robot’s model, rather than as sensorial

measurements. The differences between the actual angular

displacements of the wheels (ΔθR and ΔθL) and those ones

measured by the encoders (Δθ̃R and Δθ̃L) are modeled by a

zero mean Gaussian white noise accordingly to System 10.{
ΔθR = Δθ̃R + εR

ΔθL = Δθ̃L + εL
(10)

The measured ΔL̃ and Δθ̃ are defined by replacing (ΔθR
and ΔθL) by (Δθ̃R and Δθ̃L) in Equations 9. Using Equa-

tions 10, 9 and 8 to calculate the state model p(.) (System 2)

we can calculate, by deriving the model, the matrices G and

V used during the prediction phase (Equations 4 and 5).

ΔL

y Δθ

x

b

r
ΔθL

ΔθR

Fig. 1. Variables of the kinematic model.

st state vector (order n) at instant t
p(·) non-linear model of the system

ut−1 input signals (order l), instant t−1
εt−1 process noise (order q), instant t−1

zt vector of measurements (order m) retourned by the sensors
h(·) non-linear model of the sensors

δt measurement noise
μ̄t , μt mean (order n) of the state vector st , before and after the update

phase
Σ̄t ,Σt covariance (n×n) of the state vector st

Gt Jacobian matrix (n×n) that linearizes the system model p(·)
Vt Jacobian matrix (n× q) that maps the process noise εt to a n-

dimensional linearized additive noise
Mt covariance (q×q) of the process noise εt
Kt gain of the Kalman filter (n×m)
Ht Jacobian matrix (m×n) that linearizes the model of the sensors

h(·)
Qt covariance matrix (m×m) of the measurement noise δt
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Fig. 2. Robotic system.

It is well known that odometry introduces accumulative

error. Therefore, the standard deviation of the noises εR
and εL is assumed to be proportional to the module of the

measured angular displacement. These considerations lead to

a definition of the matrix M given by Equation 11.

M =

(
(MR|Δθ̃R|)2 0

0 (ML|Δθ̃L|)2

)
(11)

C. Update phase: sensor model

The landmarks adopted in this work are lines on the

floor. The system is based on a robot with differential drive

and a fixed camera, as in Figure 2. The landmarks are

detected by processing images using the Hough transform

(see Section III). The detected lines are described by the

parameters ρ and α in Equation 12.

Figure 3 shows the geometric representation of these

parameters: ρ is the module and α is the angle of the vector

from the origin of the system of coordinates to the line and

perpendicular to it.

ρ = xcos(α)+ ysin(α) (12)

We define a fixed coordinate system (F) and a mobile one

(M), attached to the robot, both illustrated in Figure 4. The

origin of the mobile system has coordinates (xF
M,yF

M) in the

fixed system. θF
M represents the rotation of the mobile system

with respect to the fixed one. One should note that there is a

straight relation among these variables (xM
F ,yM

F ,θM
F ) and the

robot’s pose (xt ,yt ,θt ), which is given by Equations 13.

xt = xM
F yt = yM

F θt = θM
F +π/2 (13)

Each line on the floor is described by two static parameters

(ρF , αF). The map to be produced by the SLAM process is

composed of a set of these pairs of parameters.

Y

α

ρ

X

Fig. 3. Line parameters ρ and α.

XF

YF

FxM

F
Mθ

YM XM

FyM

Fig. 4. Mobile and fixed coordinate systems.

So, the ic vector of coordinates of the i-th landmark that

appear in Equations 7 is given by Equation 14:

ic =
[ iρF

iαF

]
(14)

At each step the robot captures an image and identifies

the parameters (ρ̃, α̃)1 of the detected lines. These image

parameters are then converted to the corresponding param-

eters (ρ̃M, α̃M) in the coordinate system M attached to the

robot, using the camera parameters (see Section III). The

vector of measurements zt to be used in the update phase

of the EKF algorithm (Equation 3) is composed of these

parameters expressed in the mobile coordinate system, as

defined in Equation 152:

zt =

[
ρ̃M

α̃M

]
(15)

To use information directly obtained by image processing

(ρ̃M, α̃M) in the update phase of the EKF-SLAM, one must

deduct the sensor model h(·), that is, the expected value of

these parameters in function of the state variables.

We use the relation between coordinates in the M and

F systems (System 16) and Equation 12 in both coordinate

systems (Equations 17 and 18):

{
xF = cos(θM

F )xM− sin(θM
F )yM + xF

M

yF = sin(θM
F )xM + cos(θM

F )yM + yF
M

(16)

iρF = xF cos(iαF)+ yF sin(iαF) (17)

ρM = xM cos(αM)+ yM sin(αM) (18)

By replacing Equations 16 in Equation 17, doing the neces-

sary equivalences with System 18 and replacing some vari-

ables using Equations 13, we obtain the Systems 19 and 20,

which represent two possible sensor models h(·) to be used in

the filter. To decide about which model to use, we calculate

both values of αM and use the model which generate the

value closer to the measured value of αM .

1We use a ˜ over a variable to indicate measured values, rather than
calculated ones.

2To simplify the notation, we are assuming that there is exactly one line
per image. In fact, we can have none, one or more than one line per image.
At each step, we execute the update phase of the EKF as many times as
the number of detected lines in the image, even none.
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a) b)

Fig. 5. Image Processing: a) detection of lines, b) calibration pattern.

{
ρM = iρF − xt cos(iαF)− yt sin(iαF)

αM = iαF −θt +π/2
(19)

{
ρM =−iρF + xt cos(iαF)+ yt sin(iαF)

αM = iαF −θt −π/2
(20)

The sensor model is incorporated into the EKF through

the H matrix (Equation 6), given by Equation 21:

H=

(−cos iαF −sin iαF 0 · · · 1 0 · · ·
0 0 −1 · · · 0 1 · · ·

)
(21)

The final columns of the H matrix are almost all null, except

for the columns corresponding to the landmark in the vector

state that matches the detected line on the image.

D. Matching

A crucial aspect of the SLAM algorithm is to establish

a match between the detected line on the image and one

of the landmarks represented in the state vector. To choose

the correct landmark, we first calculate the predicted values

of (ρF , αF) using the measured values of (ρ̃M, α̃M) and

the model in Equations 19, if α̃M ≥ 0, or in Equations 20,

if α̃M < 0. Then, these predicted values are compared to

each one of the values (iρF , iαF) in the state vector. If

the difference between the predicted values and the best

(iρF , iαF) is small enough, a match was found. If not, we

consider that a new mark was detected and the size of the

state vector is increased.

III. IMAGE PROCESSING

A. Detection of lines

Due to the choice of floor lines as landmarks, the technique

adopted to identify them was the Hough transform [9]. The

purpose of this technique is to find imperfect instances of

objects within a certain class of shapes by a voting procedure.

This voting procedure is carried out in a parameter space,

from which object candidates are obtained as local maxima

in a accumulator grid that is constructed by the algorithm

for computing the Hough transform.

In our case, the shapes are lines described by Equation 12

and the parameter space has coordinates (ρ,α). The images

are captured in grayscale and converted to black and white

using a threshold level, determined off-line. Figure 5.a shows

a typical image of the floor and the lines detected by the

Hough transform.

B. From images to the world

We assume that the floor is flat and that the camera is fixed.

So, there is a constant relation (a homography A) between

points in the floor plane (x,y) and points in the image plane

(u,v):

s ·
⎛
⎝u

v
1

⎞
⎠= A ·

⎛
⎝x

y
1

⎞
⎠ (22)

The scale factor s is determined for each point in such a way

that the value of the third element of the vector is always 1.

The homography can be calculated off-line by using a

pattern containing 4 or more remarkable points with known

coordinates (see Figure 5.b). After detecting the remarkable

point in the image, we have several correspondences between

point coordinates in the floor plane and in the image.

Replacing these points in Equation 22, we obtain a linear

system with which we can determine3 the elements of the

homograpy matrix A. Once calculated the homography, for

each detected line we do the following: a) using the values of

(ρ̃, α̃) obtained by the Hough transform, calculate two point

belonging to the line, b) convert the coordinates of these

two points to the floor plane and c)determine (ρ̃M, α̃M) of

the line that passes through these two points.

C. Sensor noise

As it is showed in Figure 2, the camera position is such

that the image plane is not parallel to the floor plane. The

resulting effect caused by the camera slope can also be

seen in Figure 5.b. From experimentation, one observed that

existing information at the top of the image suffered higher

noise if compared to the bottom area, what made us consider

that noise variance must be proportional to the distance (ρ)

of the straight line on the image. Besides, one noticed that

quality of horizontal lines which appeared on the image

was better than that of vertical ones, what allowed us to

understand that noise variance was also related to the straight

line angle (α) on the image.

If those aspects above are taken into consideration, then

the sensor noise variance adopted in this work is in ac-

cordance with the equation 23. In this equation, the term

[exp(ρ/c)−1] represents the distance proportionality, and the

term [sin(α)], the angle influence. The behavior of the

function described through the equation 23 is showed in

Figure 6.a. The values of the constants a , b and c were

calculated through experimentation. Their values are: a =
0.004, b = 0.3 and c = 45. Figure 6.b shows noise variance

function used in this work.

σ(ρ,α) = a+b · sin(α) · (exp(ρ/c)−1) (23)

3A can be determined up to a scale factor. To obtain a unique answer,
we impose a33 = 1.
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Fig. 6. Variance function: behavior of the noise variance function.

IV. RESULTS

The experiments were carried out using a robot whose two

wheels are driven by DC motors with differential steering.

Each motor has an optical encoder and a dedicated card based

on a PIC microcontroller that controls local velocity.

The computer that controls the robot is a notebook with a

color webcam. The camera captures 640 x 480 images (Fig-

ure 5.a) and each image is processed at 200 ms. Figure 5.b

shows the pattern which was used at the beginning of the

experiment (robot view) to calculate the homography.

The camera was positioned so it was possible to have

a view angle of the order of twice the robot size. The

equation 24 shows the calculated homography matrix A.

A =

⎛
⎝0.1417 0.0009 −49.2065

0.0073 −0.0761 98.6323

0.0001 0.0029 1

⎞
⎠ (24)

The experiment was carried out in an 13.5×9.0 meters

environment4 with horizontal and vertical lines approxi-

mately each 25cm (Figure 7). The robot executed an almost-

rectangular closed loop trajectory inside this building, during

which 1832 images were processed.

4The building can be seen in online map systems at coordinates 5◦ 50’
29.50"S, 35◦ 11’ 49.48"W
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Fig. 8. Trajectory.

Figure 8 shows the calculated trajectory, with a zoom in

the region where the loop is closed (Figure 9). The blue

dots correspond to the trajectory calculated by odometry only

and the red dots, to the trajectory calculated by SLAM. In

this experiment, each line was observed in 15 consecutive

images, in average. In 98% of the images the system detected

lines: tree lines in 61%, four lines in 26% and five lines

in 11% of the images. The remaining 2% were errors of

the processing image algorithm, due to illumination changes.

The matching of detected lines was correct in 95% of the

cases.

The distance from the initial position to the final one,

calculated assuming an initial pose (0,0,0o), was 0.89m,

using odometry only, and 0.02m, using SLAM; the actual

final distance, measured in loco, was very close to the one

calculated by SLAM.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
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Fig. 9. Trajectory: zoom in the region where the loop is closed.

Figure 10 shows the behavior of the y components of the

robot pose when closing the loop and Figure 11 shows the

variance (σ2) in ρ of the first re-observed line when the loop

is closed. This line was first observed in step 23, and first

re-observed in step 1591.
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Fig. 10. Robot Pose: coordinate y.

It is possible to verify the variance update just when the

lines were observed and re-observed. Before the first re-

observation (closed loop) the value of the variance in ρ
was 4.6× 10−5 (σ = 0,68cm) and after re-observations the

value was decreased to 9.2×10−6 (σ= 0,30cm). Finally, the

variances of the robot pose are shown in Figure 12.
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Fig. 11. Behavior of the variance in rho.
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V. CONCLUSIONS AND PERSPECTIVES

The main contribution of this work is an optical sensor

model that enables the use of parameters obtained from

the image processing algorithm directly in the Kalman filter

equations, without intermediate phases to calculate position

or distance, and the representation of the environment using

floor lines to reduce the number of landmarks used in

the SLAM process. Another important characteristic of our

approach is using a monocular vision system and no other

sensors (lasers, sonars, etc.) besides the odometry.

The proposed approach has no pretension of being general,

as it requires a flat floor with lines. However, in the cases

where it can be used, when compared to other approaches to

visual SLAM, it is much more efficient both in computational

cost, because of the reduced number of features, and in

precision, because of the low rate of mismatches and the

accuracy when determining the 3D position of landmarks.

Even in closed-loop environments, as the one presented in the

results, the system correctly recognized previously-detected

lines with no need of special procedures to deal with this

problem.

As future works, we intend: to improve the real-time

properties of the image processing algorithm, by adopting

some of the less time-consuming variants of the Hough

transform; to deal with line segments with finite length,

incorporating this characteristics to the step of matching lines

and using the position of terminal points of the segments as

another feature to be included into the map; and, finally, to

test our approach with other statistical filters.
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