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Abstract— The nonlinearities present in the actuators of wheeled mobile robots make them show undesirable

characteristics and become more difficult to obtain a model of the robot. The dead-zone is one of the nonlinearities

found very often in many robot actuators. Considering the dead-zone while modeling a mobile robot should lead

to more precise models. This work proposes a identification of a robot model with dead-zone. The dead-zone is

previously identified through experiments and it is used to identify a linear model to the robot using the mean

least squares method. The results shows that the identified model with dead-zone represents better the robot

than the identified model without dead-zone.
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1 Introduction

The mobile robots are robots that uses his actua-
tors to produce his own movement through the en-
vironment. There are many kinds of mobile robots
as well as models to describe them. These models
are usually nonlinear, unless some simplification is
made to generate a linear model. A linear model
without simplifications was proposed and identi-
fied in Guerra et al. (2004). The linear model
used allow the identification of the system through
classical linear identification methods, like Least
Mean Squares method.

The linear model proposed considers the robot
as a linear system but, in fact, the robot itself has
nonlinearities due to various phenomena of fric-
tion between mechanical parts. One of the most
noticeable is the dead-zone that is the range of in-
put signals that do not generate an output in the
system. Take into account the dead-zone while
modeling mobile robots should result in more re-
alistic models.

In this work a identification of a mobile robot
and his dead-zone is proposed. The robot is mod-
eled like being composed of a nonlinear block,
representing the dead-zone, connected in cascade
with a linear block, representing the robot it-
self. First a phenomenological identification of the
dead-zone is made and that information is used to
identify the robot model, using the linear model
proposed in Guerra et al. (2004).

The rest of the paper is organized as follows.
Section 2 and section 3 describes the robot and
its modeling. Section 4 presents the phenomeno-
logical identification of the dead-zone. Section 5
shows the obtained results. Finally, section 6
presents the conclusions and the future perspec-
tives.

2 ROBOT MODELING

Fig. 1 presents a diagram of the kind of robot we
consider in this work. The robot has two wheels,
driven by two independent electric motors. The
wheels are placed at each side of the robot, in
such a position that their rotation axis are coin-
cident. The robot configuration is represented by
the position of the center of the axis between the
two wheels in the Cartesian space (x and y) and
by its orientation θ (angle between the vector of
the robot orientation and the abscissas axis).
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Figure 1: Mobile Robot

2.1 Cinematic Model

The cinematic model describes the relations be-
tween the derivatives of robot position and orien-
tation and the robot linear and angular speeds, v

and w, without taking into account the causes of
its movement. The cinematic model for the con-
sidered robot in this work is presented (1).
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The equation (1) models the non-holonomic re-
strictions of the robot.



2.2 Dynamic Model

The dynamic model is derived from the physics
laws that govern the several robot subsystems, in-
cluding the actuator dynamics (electric and me-
chanical characteristics of the motors), friction
and robot dynamics (movement equations). The
derivation of this model for a small mobile robot
was presented by (Vieira et al., 2001).

For most robots, the modelling process gener-
ates a second-order model expressed by:

Ku = Mv̇ + Bv (2)

where v =
[

v w
]T

represents the robot linear

and angular speeds, u =
[

ur ul

]T
contains the

input signals (usually armature tensions) applied
to the right and left motors, K is the matrix which
transforms the electrical signals u into forces to
be generated by the robot wheels, M is the gen-
eralized inertia matrix and B is the generalized
damping matrix, which includes terms of viscous
friction and electric resistance.

2.3 Equivalent Linear Model

The complete robot model, obtained from the
union of equations (1) and (2), can be represented
by the following state equation:
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(3)

where the system output y = [ x y θ ]T corre-
sponds to the robot configuration.

To allow the application of linear discretiza-
tion techniques, we will rewrite the system equa-
tions into a linear representation of the robot dy-
namic behavior. To attain this objective, we need
to change the set of state variables: the robot’s
configuration, given by its position x and y and
its orientation θ, will be described in terms of the
robot linear displacement l and the robot orienta-
tion θ.
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The new state equation (4) has the same dy-
namic parameters than the original state equation
(3) but a new system output z = [ l θ ]T . We
observe that the linear equivalent model was ob-
tained without any simplification assumption. In
this way, the linear model is an exact equivalent
representation of the original non-linear represen-
tation in (3). However, the“l”variable is not mea-
surable: this aspect will be explored later.

2.4 Model Discretization

To allow the application of the classical estimation
techniques, it is usual deriving a discrete transfer
function equivalent to the model in (4). The first
step is the transformation of the state space form
into a continuous transfer matrix:
[
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·
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where each term Gij(s) has the following struc-
ture:

Gij(s) =
Nij(s)

D(s)
=

βij(s − ni)

s(s − p1)(s − p2)

Analysing the robot model, we see that the
two poles of Gij(s) are one mainly related to lin-
ear characteristics of the robot and the other, to
angular ones. Also, if the robot has only small
asymmetries, there will be a zero at each Gij(s)
roughly canceling the non-related pole. Thus, we
can make the following simplification:

Gij(s) =
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s(s − p1)(s − p2)
≃

{
βij
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if i = 1

βij
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In the second step, we calculate the four dis-
crete transfer functions Gij(z):
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where each term Gij(z) has the following struc-
ture:
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To obtain a parametrization appropriated to
the estimation, the transfer functions are con-
verted to equivalent difference equations:

∆lk =α1∆lk−1 (7)

+ δ11ur,k−1 − ǫ11ur,k−2

+ δ12ul,k−1 − ǫ12ul,k−2

∆θk =α2∆θk−1 (8)

+ δ21ur,k−1 − ǫ21ur,k−2

+ δ22ul,k−1 + ǫ22ul,k−2

where ∆lk = lk − lk−1 is the linear distance trav-
eled in a sampling period, ∆θk = θk − θk−1 is the
angular increment in the robot’s orientation in the
same period, and ur,k,ul,k are the plant input sig-
nals.

3 Traveled Distance Computation

The variable ∆l is not measurable. In spite of this,
we can use heuristics to calculate a plausible value

for this variable, ∆̃l. The methodology developed

to calculate ∆̃l consists of the following steps:

1. calculation of the direction of the movement,

i.e. the sign of ∆̃l

2. calculation of the path length |∆̃l|

3.1 Computation of the Movement Direction

To obtain the sign of the traveled distance, i.e.
knowing if the robot moved forward or backward,
we calculate the value of 0x1, the x coordinate of
the current configuration point (x1, y1) calculated
with respect to the reference frame attached to
the previous robot position (x0, y0), as indicated
in the Fig. 2. If 0x1 is positive, the robot will have

moved forward and ∆̃l > 0. Otherwise, the robot

will have moved backward and ∆̃l < 0.
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Figure 2: Diagram for calculating the sign of ∆̃l

A simple coordinate transformation allows the
calculation of 0x1:

0x1 = x1 cos θ0 − x0 cos θ0+

+ y1 sin θ0 − y0 sin θ0

(9)

3.2 Path Length Computation

It is possible to obtain with reasonable precision
the robot configuration (x, y, θ) in two consecutive
sampling instants, but we cannot be sure about
the path traveled by the robot between the first
and the second configuration. However, a esti-

mated value of |∆̃l| can be calculated using a
bezier curve of third degree (Curves and Surfaces
for CAGD: A Practical Guide, 1996) between con-
secutive samples, where the initial orientation of
the curve is equal to the robot orientation in the
previous sample and the final orientation is equal
to the actual robot orientation. Each control point
of the curve is located in a straight line formed by
the position and angle of the robot in each sam-
ple, with a distance of the robot position equal of
a third of the euclidean distance between the sam-
ples, as shown in Fig. 3. The estimated value |∆̃l|
can be achieved by numerical integration of the
bezier curve. Note that the control points should
agree with the movement direction of the robot
(forward or backward).
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Figure 3: Diagram for |∆̃l| computation

4 Experimental Dead-Zone Identification

The model described above is linear, but the robot
still have some nonlinearities that the model does
not take into account. The dead-zone is a non-
linear phenomena caused by the friction present
in the system, more specifically, the friction be-
tween the axis of the engines and their sockets,
between the gears of the actuators and between
the robot and the ground. The dead-zone is one
of the most remarkable nonlinearities and his ef-
fect is more noticeable when the robot is excited
with input signals with low amplitude.

The dead-zone can be modeled by a nonlin-
ear input. A dead-zone with input r(t) and out-
put u(t) is shown in the figure 4 and is described
by equation 10 (Tao and Kokotovic, 1994). The
figure 4 shows the input signal r(t) being trans-
formed in the signal u(t) that is applied in the sys-
tem. Note that u(t) is virtual, ie, non-measurable.

u(t) =





mr(r(t) − br) if r(t) ≥ br

0 if bl < r(t) < br

ml(r(t) − bl) if r(t) ≤ bl

(10)
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Figure 4: Dead-zone model

The equation 10 has four parameters, br,bl,mr

and ml, meaning that the dead-zone can be asym-
metric. Since the model has two input signals,
there will be two dead-zones and then eight pa-
rameters to be estimated. Those parameters were
experimentally estimated. The experiment con-
sisted in vary one input signal trough all possible
values while the other input was fixed to zero. In
this configuration, the robot makes circular move-
ment with its center located at the stationary
wheel. The key idea is compare the non-constant
input signal with the steady state angular velocity
of the robot and observe for what input values the
robot starts his movement and how the variation
of angular velocity occurs. The figure 5 shows the
results of the experiment described above.
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Figure 5: Result of experiment to estimate the
dead-zone

The estimation of br and bl is obtained di-
rect by the graph being the minimal input value
that generated angular velocity. Considering that
when the maximum input value is applied the vir-
tual value will be maximum and equal to the input
value, mr and ml can be calculated respectively
by equations 11 and 12. The experiment can be
repeated swapping the input signals to estimate
the parameters of the other dead-zone.

mr =
max [r(t)]

max [r(t)] − br

(11)

ml =
min [r(t)]

min [r(t)] − bl

(12)

5 Results

This section presents the results of the identifica-
tion of the mobile robot model using the exper-
imentally identified dead-zone model. The data
were obtained from a small mobile robot with
two independent DC motors used in robot soc-
cer competitions (Cerqueira et al., 2005). The in-
put signals er and el are the armature voltages
of the right and left DC motors, and the output
y = [ x y θ ]T is measured with a global vision
system(Aires et al., 2001).

The classical method of Recursive Least Mean
Squares (Aguirre, 2007) was utilized for the esti-
mation of the parameters of the model. The sys-
tem was excited with pseudo-random input sig-
nals, with values between 1.0 and −1.0 (meaning
100% and −100% of the motor supply voltage).
The non-measurable signal is calculated using the
dead-zone model and is used to make the regres-
sor matrix of the least squares method instead of
using the original input signals.

The figures 6 and 7 shows respectively ∆l

and ∆θ obtained from the identified model with
dead-zone using pseudo-random input signals and
the measured values obtained by exciting the real
robot with the same input signals.
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Figure 6: Comparison between calculated (“real”)
∆l and ∆l estimated by the model

6 Conclusion

The identified model with dead-zone shows a good
approximation to the real system. When making a
prior phenomenological identification of the dead-
zone and using it to update the input signals, we
let the system to be identified with less nonlin-
earities, causing the identified model to be more
like the real system. Comparisons between that
scheme and the direct identification method shows
a slight improvement of the identified model due
the addition of the dead-zone to the model.

One drawback of the method is that the dead-
zone may be time-variable, due to the wastage of
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Figure 7: Comparison between measured (“real”)
∆θ and ∆θ estimated by the model

mechanical parts or decrease of the power supply
when the robot is powered by batteries. Neverthe-
less, in these cases the spin experiments and the
identification can be remade to update the param-
eters of dead-zone and of the robot model.

The proposed approach can be improved by
adapting existing techniques (Vörös, 2004) to also
identify on line the dead zone parameters; the
main difficulty in this case is to extend the mono-
variable existing proposals to this multi-variable
context.

Future works will use the identified model to
control the robot (Vieira et al., 2004), using tech-
niques of adaptive control.
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