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Abstract 

Many applications deal with the rendering of trimmed surfaces and the generation of grids for trimmed 
surfaces. Usually, a structured or unstructured grid must be constructed in the parameter space of the 
trimmed surface. Trimmed surfaces not only cause problems in the context of grid generation but also when 
exchanging data between different CAD systems. This paper describes a new approach for decomposing the 
valid part of the parameter space of a trimmed surface into a set of four-sided surfaces. The boundaries of 
these four-sided surfaces are line segments, segments of the trimming curves themselves, and segments of 
bisecting curves that are defined by a generalized Voronoi diagram implied by the trimming curves in 
parameter space. We use a triangular background mesh for the approximation of the bisecting curves of the 
generalized Voronoi diagram. 

1. Introduction  

This paper is concerned with the approximation of parametric surfaces containing trimming curves by a set 
of surfaces that do not contain trimming curves. Trimmed surfaces arise frequently in real-world 
applications. Typically, they are the result of surface-surface intersection (SSI). Complex geometries are 
defined in terms of thousands of surfaces which might intersect each other. The intersection curves are 
usually defined in the parameter space of the surfaces, e.g., by a set of planar Bézier, B-spline, or NURBS 
(non-uniform rational B-spline) curves. 

The algorithm presented in this paper has various potential applications. Many CAD systems cannot 
represent trimmed parametric surfaces implicitly, i.e., as parametric surfaces with the trimming curves 
defined in parameter space. This causes a problem when exchanging trimmed surface data between CAD 
systems. Grid generation algorithms also have to handle trimmed surfaces, and it is important to generate 
grids in the valid part only. Furthermore, certain grid lines should conform to the given trimming curves. 
Rendering algorithms define yet another type of algorithms that have to deal with trimmed surfaces: it is 
essential to use only the valid part for surface polygonization and rendering. We present a new method that 
decomposes the valid part of a trimmed surface by a set of untrimmed, four-sided surfaces. The 
decomposition into a set of basic surfaces is done in parameter space, and the union of all these basic 
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surfaces defines the valid part of a trimmed surface exactly. We use the term ``valid part'' to refer to the part 
that remains when disregarding all holes implied by the trimming curves. 

This paper discusses an approach for the representation of trimmed surfaces. The complement of the part 
that is ``cut out'' by the trimming curves is defined by means of decomposing the valid part of the parameter 
space into a set of four-sided regions. In the following, only tensor product surfaces are considered. They 
are denoted by 

 

where  and  and  could be Bernstein-Bézier polynomials, B-spline basis 

functions, or even rational B-spline basis functions (see [Farin '93]). It is assumed that  is  continuous. 

The closed trimming curves in parameter space are denoted by 

 

where  and  It is assumed that the rotation number of all trimming curves is the 

same, i.e., they have the same orientation. Each trimming curve must be at least  continuous but can have 
tangent discontinuities. A trimming curve must not intersect another trimming curve and must not self-
intersect. In most practical applications, there is one trimming curve enclosing the region that contains all 
the other trimming curves, which is assumed to be  If this enclosing trimming curve is not explicitly 
defined, the boundary of the parameter space is chosen to be  ( i.e.,  is the piecewise linear curve given 
by the four line segments v=0, u=1, v=1, and u=0). Fig. 1 shows the trimming curves of a trimmed surface 
in physical and parameter space. 

 

Fig. 1. Trimming curves in physical (left) and parameter space (right). 
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The approach described in this paper is similar to the construction of planar Voronoï and power diagrams in 
the sense that a tesselation of the valid part of the parameter space of a trimmed surface is computed. These 
diagrams are described in detail in [Aurenhammer '87], [Edelsbrunner '87], and [Preparata & Shamos '90]. 
This paper presents a new method for the construction of the curved boundaries (bisecting curves) defining 
the tiles associated with the trimming curves. A computationally efficient technique is used for generating a 
finite set of points on each bisecting curve. The technique is based on shortest distance computations for a 
finite set of points on a rectilinear grid in parameter space. 

Typical generalizations of Voronoï diagrams in the plane deal with the construction of Voronoï diagrams for 
sets of points, line segments, polygons, circles, and more general planar curves. The construction of Voronoï 
diagrams for such sets is discussed in [Farouki & Johnstone '94], [Klein et al. '93], [Lee & Drysdale '81], 
[Leven & Sharir '86], [Sharir '85], [Srinivasan & Nackman '87], and [Yap '87]. 

An algorithm for rendering trimmed surfaces by using quadrilateral and triangular elements is described in 
[Rockwood et al. '89]. In [Baehmann et al. '87], a two-dimensional (2D) mesh generation algorithm is 
described that automatically discretizes 2D regions containing trimming curves based on the identification of 
certain geometrical features of the trimming curves, e.g., slope discontinuities. A technique utilizing a 
combined ``triangulation-quadrangulation'' strategy of the valid part of the parameter space of a trimmed 
surface is presented in [Vries-Baayens & Seebregts '92]. A method for representing a trimmed NURBS 
(non-uniform rational B-spline) surface by a set of Bézier patches is discussed in [Hoschek & Schneider '90] 
in the context of data exchange: trimmed rational surfaces are approximated by non-rational surfaces. 

Curve and surface design techniques used in this paper are covered in [Boehm & Prautzsch '94] and [Farin 
'93]. Various solutions to the SSI problem are described in [Barnhill '92]. A survey of SSI algorithms is 
provided in [Patrikalakis '93]. 

2. Problem statement and definitions 

The trimming curves define a simply connected region in parameter space. The goal is to represent this 
region by a set of planar, four-sided surfaces whose union is the valid part of the parameter space. Such a 
surface is referred to as a parameter surface and is denoted by 

 

where  Thus, the part of a surface  that is implied by the parameter surface  is given by 

 

The main problem to be solved is the generation of the boundary curves of the parameter surfaces. This 
problem can be solved using a generalization of the Voronoï diagram of a point set. When dealing with 
trimmed surfaces, the trimming curves define the set for which a tesselation, a generalized Voronoï diagram, 
must be computed. The tile boundaries in a planar Voronoï diagram implied by a point set are obtained from 
the perpendicular bisectors of all possible point pairs (see [Edelsbrunner '87] and [Preparata & Shamos '90]). 
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Generalizations of this ``standard'' Voronoï diagram are obtained when the elements for which a tesselation 
is to be constructed are points, line segments, circles, polygons, and more general curves. Fig. 3 shows 
Voronoï diagram for a set of points and a set of circles (see [Aurenhammer '87] and [Facello '95]). 

 

Fig. 2. Voronoï diagram for set of points and set of circles. trimming curves. 

Voronoï diagrams introduce tiles around each element (points, line segments, circles, etc.) according to 
some distance measure. A tile is defined as the region that contains all the points being closer to a particular 
element than any other element. The tile boundary is used to subdivide a tile into a set of four-sided planar 
surfaces whose union represents the area between the element and the element's tile boundary. Each four-
sided surface can be constructed by subdividing the tile boundary curve into segments and generating 
additional curves connecting end points of the tile boundary segments and points on the element. This 
principle is shown in Fig. 3. 
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Fig. 3. Four-sided parameter surfaces in tiles around trimming curves. 

3. Computing the Voronoï diagram for a set of trimming curves 

An efficient algorithm is needed for the generation of the tile boundaries around each trimming curve in 
parameter space. First, tiles are constructed around the trimming curves    ..., and  The final tiles 
are obtained by intersecting the tile boundary curves in the Voronoï diagram for    ..., and  with 
the enclosing trimming curve  

Initially, the trimming curve  is not considered in the construction of the Voronoï diagram. The generation 
of the Voronoï diagram is based on the computation of the intersections of bisectors with the edges in a 
triangulation of the parameter space  The vertices in this triangulation are labeled according to 

the index of the closest trimming curve. The labels are used to determine whether there is an intersection 
between bisectors and edges in the triangulation. The intersections between the edges and the bisectors are 
computed and properly connected, thus defining the topology and an initial approximation of the Voronoï 
diagram. 

Multiple bisectors can intersect the same edge in the triangulation, and multiple bisectors can intersect in the 
interior of a triangle. These cases are covered by Algorithm 3.1. described below. Algorithm 3.1. does not 
consider the case of one bisector intersecting the same edge multiple times. It turns out that this is not 
necessary for obtaining the approximation of the Voronoï diagram, which requires these steps: 

� (i) Construction of a triangulation of the parameter space 
� (ii) Extraction of all triangles whose three vertices all lie in the valid part of the parameter space 
� (iii) Labeling each vertex in the triangulation with the index of the closest trimming curve 
� (iv) Computation of intersections between bisectors and edges in the triangulation using a recursive 

subdivision strategy 
� (v) Computation of intersections of bisectors 
� (vi) Computation of intersections between bisectors and curve 
� (vii) Generation of piecewise linear and cubic B-spline approximations of all tile boundaries in the 

Voronoï diagram 

Denoting the minimal distance of all possible pairs of trimming curves by  the initial triangulation of 

the parameter space only contains edges that are shorter than  This is accomplished by subdividing 

the parameter square  into squares whose diagonal is shorter than  and splitting each 

square into two triangles. Only triangles whose three vertices all lie in the valid part of the parameter space 
are considered for the following computations. 

Each vertex in the triangulation is labeled according to the closest trimming curve. The square of the 
distance d between a vertex with coordinate vector  and a trimming curve  is given by 

  The critical points of  are identified, and the 

associated distances are computed. In addition, one computes the distances to those points on  where 
slope discontinuities occur. The index of the trimming curve that has minimal distance to  is used as the 

label for this vertex. It turns out that the case of multiple trimming curves all having minimal distance to 
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 does not require a special case treatment. 

The labels at each vertex in the triangulation are used to identify edges which are intersected by at least one 
bisector. It is possible that the three labels at a triangle's vertices are the same, that there are two different 
labels, or that they are all different. In the first case, it is assumed that no bisector intersects the triangle. In 
the second case, it is assumed that there are bisectors intersecting the two edges whose end points have 
different labels. In the third case, it is assumed that there are bisectors intersecting all three edges. Points 
lying on bisectors in the Voronoï diagram are computed based on Algorithm 3.1. 

Algorithm 3.1. ( Computation of points on bisectors in Voronoï diagram). 

Input:  

� trimming curves    ..., ,
� triangulation of parameter space , 
� label  at each vertex in triangulation referring to closest curve , 
� tolerance ;

Output:  

� set of points on bisectors in Voronoï diagram; 

for  all triangles in the parameter space triangulation do
 if there are at least two different labels among   and 

 associated with the triangle's vertices   and  

  compute the midpoints  of the edges  

 ; 

 for  all edges  whose end points have different labels  and  do 

   find the point  on  that has the same distance to  and ; 

  if  there is no trimming curve that is closer to  than both  and  
    consider the point  as a point on a bisector; 
  else 
    replace the value of  by the value of ; 
  

 if  one has found at least one point  for which neither  nor  is the closest curve 
   split the triangle into the four subtriangles given by the triples 

     and ; 

   find the intersections of bisectors with the edges of these subtriangles; 
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Fig. 4. Recursive subdivision of triangulations for generation of bisectors. 

Fig. 4 shows the results of Algorithm 3.1. for two different configurations. A piecewise linear approximation 
of the Voronoï diagram is obtained by connecting the points resulting from Algorithm 3.1. If exactly two 
edges of a triangle contain each one point on a bisector, denoted by  and  then  and  are connected. 
If all three edges of a triangle each contain one point on a bisector, denoted by   and  then   
and  are assumed to be lying on three different bisectors. In the second case, each of the three points is 
connected with the point  that is the intersection of three bisectors. 

An iterative method is used to approximate the coordinates of  The centroid of   and  is used as 
the initial approximation  of  and subsequent approximations  are obtained by repeatedly computing 

the three closest points on the trimming curves   and  ( i.e., the trimming curves closest to   
and  and replacing a previous approximation by the center of the circle passing through these three 

closest points. The method terminates when the Euclidean distance between two successive approximations 
 and  is smaller than  Whenever Algorithm 3.1. leads to a triangle whose longest edge is shorter than 

 (one of the termination criteria of the algorithm) the centroid of such a triangle is considered to be the 
intersection of bisectors. Eventually, one obtains a piecewise linear approximation of all bisectors in the 
Voronoï diagram. 

Based on the piecewise linear approximation of the Voronoï diagram and the curve segments of  a cubic 
B-spline approximation is constructed for all tile boundary curves. The tile boundary curve associated with 
the trimming curve  is denoted by  The cubic B-spline representation of  is based on a chord length 

parametrization defined by the lengths of the line segments in the piecewise linear approximation (see [Farin 
'93]). Fig.5 shows the cubic B-spline curves approximating the tile boundaries for a configuration with an 
enclosing trimming curve  The piecewise linear approximation of the Voronoï diagram is intersected with 
the enclosing trimming curve  and the resulting curve segments on  are used for the definition of the tile 
boundary curves around    ..., and  
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Fig. 5. Cubic B-spline approximation of Voronoï diagram for trimming curves. 

In practical applications, one is often concerned with interior trimming curves that are not closed and 
intersect the outer trimming curve . If this is the case, the intersections between those trimming curves and 

 are computed, and the resulting curve segments on  - in combination with the trimming curves that are 
not closed - define a new enclosing trimming curve . Once this new curve  has been computed, the 
construction of the Voronoï diagram follows the same principle as discussed above. Fig. 6 shows a 
configuration the trimming curve  is intersected by four trimming curves. 

 

Fig. 6. Trimming curves intersecting enclosing trimming curve. 
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Once the Voronoï diagram is known, each tile can independently be decomposed into parameter surfaces. 
Thus, all tiles can be processed in parallel, and only the two curves  and  must be considered for the 

construction of the parameter surfaces inside a particular tile. 

4. Computing the boundary curves for parameter surfaces 

A scan line algorithm (see [Foley et al. '90]) is the basis for the construction of the parameter surfaces 
inside the tile associated with trimming curve  The region between the trimming curve  and the tile 
boundary curve  is represented by a set of ruled parameter surfaces. They are obtained by (i) identifying 
local extrema in v-direction (and horizontal line segments) on  and ; (ii) computing the intersections 
between horizontal lines passing through the local extrema (and the horizontal line segments) and  and ; 
and (iii) constructing ruled parameter surfaces using the horizontal line segments inside the tile and curve 
segments on  and  

Fig. 7 shows a real-world example. The trimming curves, the tile boundary curves of the generalized 
Voronoï diagram, and the resulting curvilinear grids in parameter space are shown. 

 

Fig. 7. Fuselage with multiple trimming curves. 

5. Conclusions 

A method for representing the region ``between'' the trimming curves in the parameter space of a trimmed 
parametric surface has been presented. A generalized Voronoï diagram is computed for the set of trimming 
curves, and the resulting tiles associated with each trimming curve are subdivided into ruled parameter 
surfaces. The method has potential applications in the areas of surface rendering, grid generation, and data 
exchange. 
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