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Abstract

Many applications deal with the rendering of trimmed surfaces and the generation of grids for trimmed
surfaces. Usually, a structured or unstructured grid must be constructed in the parameter space of the
trimmed surface. Trimmed surfaces not only cause problems in the context of grid generation but also wh
exchanging data between different CAD systems. This paper describes a new approach for decomposing
valid part of the parameter space of a trimmed surface into a set-sidedrsurfaces. The boundaries of
these fowrsided surfaces are line segments, segments of the trimming curves themselves, and segments
bisecting curves that are defined by a generalized Voronoi diagram implied by the trimming curves in
parameter space. We use a triangular background mesh for the approximation of the bisecting curves of
generalized Voronoi diagram.

1. Introduction

This paper is concerned with the approximation of parametric surfaces containing trimming curves by a st
of surfaces that do not contain trimming curves. Trimmed surfaces arise frequentlywontdal

applications. Typically, they are the result of surfaugace intersection (SSI). Complex geometries are
defined in terms of thousands of surfaces which might intersect each other. The intersection curves are
usually defined in the parameter space of the surfaagsby a set of planar@ier, B-spline, or NURBS
(nonuniform rational Bspline) curves.

The algorithm presented in this paper has various potential applications. Many CAD systems cannot
represent trimmed parametric surfameplicitly, i.e., as parametric surfaces with the trimming curves
defined in parameter space. This causes a problem when exchanging trimmed surface data between CAI
systems. Grid generation algorithms also have to handle trimmed surfaces, and it is important to generatt
grids in the valid part only. Furthermore, certain grid lines should conform to the given trimming curves.
Rendering algorithms define yet another type of algorithms that have to deal with trimmed surfaces: it is
essential to use only the valid part for surface polygonization and rendering. We present a new method tt
decomposes the valid part of a trimmed surface by a set of untrimmedjdedrsurfaces. The

decomposition into a set basicsurfaces is done in parameter space, and the union of all these basic
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surfaces defines the valid part of a trimmed surface exactly. We use the term ““valid part" to refer to the
that remains when disregarding all holes implied by the trimming curves.

This paper discusses an approach for the representation of trimmed surfaces. The complement of the pa
that is ~“cut out" by the trimming curves is defined by means of decomposing the valid part of the parame
space into a set of fowsided regions. In the following, only tensor product surfaces are considered. They
are denoted by

11

s{,v) = (z(2,9), 90w, v}, 2(w,9)) = D} Y diydile) d5(v), wwe[0,1), (1)

t=0 f=0

whered: ; = (F1,;. %47, %4} andga (=) andw?; {r} could be BernsteiBézier polynomials, Bspline basis
functions, or even rational-Bpline basis functions (see [Farin '93]). It is assumeds €™ continuous.

The closed trimming curves in parameter space are denoted by

exlt) = (ul) o) = D & @), i€[0,1), k=0,.K, (2)

=0

whered? = (u¥, v¥} ander (0) = ex(1). It is assumed that the rotation number of all trimming curves is the

samej.e., they have the same orientation. Each trimming curve must be &%eamttinuous but can have
tangent discontinuities. A trimming curve must not intersect another trimming curve and must not self
intersect. In most practical applications, there is one trimming curve enclosing the region that contains all
the other trimming curves, which is assumed tfo9 this enclosing trimming curve is not explicitly

defined, theboundary of the parameter space is chosen o pee., @0 is the piecewise linear curve given

by the four line segments=0, u=1, v=1, andu=0). Fig. 1 shows the trimming curves of a trimmed surface
in physical and parameter space.

Fig. 1. Trimming curves in physical (left) and parameter space (right).
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The approach described in this paper is similar to the construction of planar Mardmmwer diagrams in

the sense that a tesselation of the valid part of the parameter space of a trimmed surface is computed. T
diagrams are described in detail in [Aurenhammer '87], [Edelsbrunner '87], and [Preparata & Shamos '90
This paper presents a new method for the construction of the curved boundaries (bisecting curves) defini
the tiles associated with the trimming curves. A computationally efficient technique is used for generating
finite set of points on each bisecting curve. The technique is based on shortest distance computations fot
finite set of points on a rectilinear grid in parameter space.

Typical generalizations of Vorondiagrams in the plane deal with the construction of Vdrdragrams for

sets of points, line segments, polygons, circles, and more general planar curves. The constructioniof Vor
diagrams for such sets is discussed in [Farouki & Johnstone '94], lairn93], [Lee & Drysdale '81],

[Leven & Sharir '86], [Sharir '85], [Srinivasan & Nackman '87], and [Yap '87].

An algorithm for rendering trimmed surfaces by using quadrilateral and triangular elements is described in
[Rockwoodet al.'89]. In [Baehmanet al.'87], a twedimensional (2D) mesh generation algorithm is
described that automatically discretizes 2D regions containing trimming curves based on the identification
certain geometrical features of the trimming cureeg, slope discontinuities. A technique utilizing a
combined "triangulatiouadrangulation” strategy of the valid part of the parameter space of a trimmed
surface is presented in [Vri&aayens & Seebregts '92]. A method for representing a trimmed NURBS
(nonruniform rational Bspline) surface by a set o€Her patches is discussed in [Hoschek & Schneider '90]
in the context of data exchange: trimmed rational surfaces are approximatedragioral surfaces.

Curve and surface design techniques used in this paper are covered in [Boehm & Prautzsch '94] and [Fa
'93]. Various solutions to the SSI problem are described in [Barnhill '92]. A survey of SSI algorithms is
provided in [Patrikalakis "93].

2. Problem statement and definitions

The trimming curves define a simply connected region in parameter space. The goal is to represent this
region by a set of planar, fesrded surfaces whose union is the valid part of the parameter space. Such a
surface is referred to aparameter surfacand is denoted by

1y 1y

wit,m = (&, ulE,n) = DY d; 5@ Em, Erell), (3

i=0 F=0
wheredéd = {uﬁif,ué,j} Thus, the part of a surfasehat is implied by the parameter surfazzés given by

bz 1

s(u) = s{ul,7),wit,m) = X 2 dijy o (il m) & (ullm), &nel0,1).
t=0 f=0
(4)

The main problem to be solved is the generation of the boundary curves of the parameter surfaces. This
problem can be solved using a generalization o¥/tdrend diagramof a point set. When dealing with
trimmed surfaces, the trimming curves define the set for which a tesselation, a generalizetidvaycaro,

must be computed. The tile boundaries in a pl&ieaond diagramimplied by a point set are obtained from
the perpendicular bisectors of all possible point pairs (see [Edelsbrunner '87] and [Preparata & Shamos *
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Generalizations of this ““standard" Vorod@agram are obtained when the elements for which a tesselation
is to be constructed are points, line segments, circles, polygons, and more general curves. Fig. 3 shows
Vorona diagram for a set of points and a set of circles (see [Aurenhammer '87] and [Facello '95]).

Fig. 2. Voronddiagram for set of points and set of circles. trimming curves.

Vorona diagrams introductles around each element (points, line segments, circles, etc.) according to
some distance measure. A tile is defined as the region that contains all the points being closer to a partic
element than any other element. The tile boundary is used to subdivide a tile into a sesidetbplanar
surfaces whose union represents the area between the element and the element's tile boundary. Each fo
sided surface can be constructed by subdividing the tile boundary curve into segments and generating
additional curves connecting end points of the tile boundary segments and points on the element. This
principle is shown in Fig. 3.
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Fig. 3. Foursided parameter surfaces in tiles around trimming curves.
3. Computing the Vorond diagram for a set of trimming curves

An efficient algorithm is needed for the generation of the tile boundaries around each trimming curve in
parameter space. First, tiles are constructed around the trimming 1:1%2:€3; ..., and®& - The final tiles

are obtained by intersecting the tile boundary curves in the Viodagram forf1: £2: 3. ... and®& with
the enclosing trimming cunca-

Initially, the trimming curve® is not considered in the construction of the Voiaiagram. The generation

of the Voronddiagram is based on the computation of the intersections of bisectors with the edges in a
triangulation of the parameter spd(, 1] x [(, 1]. The vertices in this triangulation are labeled according to

the index of the closest trimming curve. The labels are used to determine whether there is an intersection
between bisectors and edges in the triangulation. The intersections between the edges and the bisectors
computed and properly connected, thus defining the topology and an initial approximation of thé Vorono
diagram.

Multiple bisectors can intersect the same edge in the triangulation, and multiple bisectors can intersect in
interior of a triangle. These cases are covered by Algorithm 3.1. described below. Algorithm 3.1. does no
consider the case of one bisector intersecting the same edge multiple times. It turns out that this is not
necessary for obtaining the approximation of the Voirdiagram, which requires these steps:

(i) Construction of a triangulation of the parameter space

(if) Extraction of all triangles whose three vertices all lie in the valid part of the parameter space

(iii) Labeling each vertex in the triangulation with the index of the closest trimming curve

(iv) Computation of intersections between bisectors and edges in the triangulation using a recursive
subdivision strategy

(v) Computation of intersections of bisectors

(vi) Computation of intersections between bisectors and curve

(vii) Generation of piecewise linear and cubisine approximations of all tile boundaries in the
Vorond diagram

Denoting the minimal distance of all possible pairs of trimming curvémi=., the initial triangulation of
the parameter space only contains edges that are shortdm:a /2. This is accomplished by subdividing
the parameter squd, 1] x [}, 1] into squares whose diagonal is shorter dmin /2 and splitting each

square into two triangles. Only triangles whose three vertices all lie in the valid part of the parameter spac
are considered for the following computations.

Each vertex in the triangulation is labeled according to the closest trimming curve. The square of the
distanced between a vertex with coordinate ved=. '} and a trimming curvex(t} is given by
£t} = (z — m |[1t}}2 + (7 — uk{t}}z, t € [0,1]. The critical points od?(t) are identified, and the

associated distances are computed. In addition, one computes the distances to those"sevhteren
slope discontinuities occur. The index of the trimming curve that has minimal distd=, i)t used as the

label for this vertex. It turns out that the case of multiple trimming curves all having minimal distance to
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{=, 1} does not require a special case treatment.

The labels at each vertex in the triangulation are used to identify edges which are intersected by at least «
bisector. It is possible that the three labels at a triangle's vertices are the same, that there are two differe
labels, or that they are all different. In the first case, it is assumed that no bisector intersects the triangle.
the second case, it is assumed that there are bisectors intersecting the two edges whose end points hav
different labels. In the third case, it is assumed that there are bisectors intersecting all three edges. Point:
lying on bisectors in the Voroindiagram are computed based on Algorithm 3.1.

Algorithm 3.1. ( Computation of points on bisectors in Vorod@agran).
Input:

e trimming curvesi: £2; €3, | CK,
triangulation of parameter spdf}, 1] x [{, 1],

labeld € {1,2,3,..., K} at each vertex in triangulation referring to closest cerye
¢ tolerancee;

Output:
¢ set of points on bisectors in Vordribagram;

for all triangles in the parameter space trianguladion
if there are at least two different labels am{1.d2, and

I3 associated with the triangle's vertiei 322, andes
{ o compute the midpoinim,; of the edgesi,; = Wy,
(i.4) € {(1,2),(2,3}, (1,3} )
for all edges:,; whose end points have different lakfiland{; do
{ o find the pointg,; ones,; that has the same distanceziander;;

if there is no trimming curve that is close®i.j than botrt and€i;
o consider the poirP4.j as a point on a bisector;

else
o replace the value ™.j by the value o4.j,

}

if one has found at least one pd.j for which neithe®# nor€; is theclosest curve
{ o split the triangle into the four subtriangles given by the triples

(1,2, My 3}, (V2. M23, M2}, (va,my 2, 3) ANd{my 5, my 3, my 2);

o find the intersections of bisectors with the edges of these subtriangles;

}
}
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Fig. 4. Recursive subdivision of triangulations for generation of bisectors.

Fig. 4 shows the results of Algorithm 3.1. for two different configurations. A piecewise linear approximatio
of the Voronddiagram is obtained by connecting the points resulting from Algorithm 3.1. If exactly two
edges of a triangle contain each one point on a bisector, denc?tahg?2: thenP1 and®P2 are connected.

If all three edges of a triangle each contain one point on a bisector, den®:@2yand#*: then?!: 22,
and®3 are assumed to be lying on three different bisectors. In the second case, each of the three points i
connected with the poidtthat is the intersection of three bisectors.

An iterative method is used to approximate the coordinat?-sToéfe centroid of1: 2. andP3 is used as
the initial approximatioig® of g, and subsequent approximatigisire obtained by repeatedly computing

the three closest points on the trimming cuff s : and®i (i.e. the trimming curves closest?1: P2.
andpa} and replacing a previous approximation by the center of the circle passing through these three

closest points. The method terminates when the Euclidean distance between two successive approximat
g* andg**!is smaller thae. Whenever Algorithm 3.1. leads to a triangle whose longest edge is shorter thar

£ (one of the termination criteria of the algorithm) the centroid of such a triangle is considered to be the
intersection of bisectors. Eventually, one obtains a piecewise linear approximation of all bisectors in the
Vorona diagram.

Based on the piecewise linear approximation of the Vardiagram and the curve segmentosfa cubic
B-spline approximation is constructed for all tile boundary curves. The tile boundary curve associated witt
the trimming curvesi is denoted b¥i- The cubic Bspline representation € is based on a chord length

parametrization defined by the lengths of the line segments in the piecewise linear approximation (see [Fe
'93]). Fig.5 shows the cubic-8pline curves approximating the tile boundaries for a configuration with an
enclosing trimming curvfe- The piecewise linear approximation of the Voriosiagram is intersected with

the enclosing trimming cunfe: and the resulting curve segmentsfmare used for the definition of the tile
boundary curves arour®i: ©2: €3, ..., anct&-
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Fig. 5. Cubic Bspline approximation of Voroiidiagram for timming curves.

In practical applications, one is often concerned with interior trimming curves that are not closed and
intersect the outer trimming cur®e If this is the case, the intersections between those trimming curves an

o are computed, and the resulting curve segmenrts -om combination with the trimming curves that are
not closed define a new enclosing trimming curfe Once this new cure has been computed, the

construction of the Voronaiagram follows the same principle as discussed above. Fig. 6 shows a
configuration the trimming cun¥® is intersected by four trimming curves.

Fig. 6. Trimming curves intersecting enclosing trimming curve.
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Once the Voroniadiagram is known, each tile can independently be decomposed into parameter surfaces.
Thus, all tiles can be processed in parallel, and only the two iraede: must be considered for the

construction of the parameter surfaces inside a particular tile.
4. Computing the boundary curves for parameter surfaces

A scan line algorithn{see [Foleyet al.'90]) is the basis for the construction of the parameter surfaces
inside the tile associated with trimming cua/&he region between the trimming cugvand the tile

boundary curvé is represented by a setrofed parameter surface$hey are obtained by (i) identifying

local extrema irv-direction (and horizontal line segments)eosande; (i) computing the intersections

between horizontal lines passing through the local extrema (and the horizontal line segmerdasdend

and (iii) constructing ruled parameter surfaces using the horizontal line segments inside the tile and curve
segments o2 ande.

Fig. 7 shows a realiorld example. The trimming curves, the tile boundary curves of the generalized
Vorond diagram, and the resulting curvilinear grids in parameter space are shown.

Fig. 7. Fuselage with multiple trimming curves.

5. Conclusions

A method for representing the region “between" the trimming curves in the parameter space of a trimme:
parametric surface has been presented. A generalized Ydragam is computed for the set of trimming
curves, and the resulting tiles associated with each trimming curve are subdivided into ruled parameter
surfaces. The method has potential applications in the areas of surface rendering, grid generation, and d.
exchange.
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