
7 Voronoi Diagrams
The Post Office Problem

Suppose you are on the advisory board for the planning of a supermarket chain,
and there are plans to open a new branch at a certain location. To predict
whether the new branch will be profitable, you must estimate the number of
customers it will attract. For this you have to model the behavior of your po-
tential customers: how do people decide where to do their shopping? A similar
question arises in social geography, when studying the economic activities in
a country: what is the trading area of certain cities? In a more abstract set-

Figure 7.1
The trading areas of the capitals of the
twelve provinces in the Netherlands, as
predicted by the Voronoi assignment
model

ting we have a set of central places—called sites—that provide certain goods
or services, and we want to know for each site where the people live who ob-
tain their goods or services from that site. (In computational geometry the
sites are traditionally viewed as post offices where customers want to post their
letters—hence the subtitle of this chapter.) To study this question we make the
following simplifying assumptions:

the price of a particular good or service is the same at every site; 147



Chapter 7
VORONOI DIAGRAMS

the cost of acquiring the good or service is equal to the price plus the cost
of transportation to the site;

the cost of transportation to a site equals the Euclidean distance to the site
times a fixed price per unit distance;

consumers try to minimize the cost of acquiring the good or service.

Usually these assumptions are not completely satisfied: goods may be cheaper
at some sites than at others, and the transportation cost between two points is
probably not linear in the Euclidean distance between them. But the model
above can give a rough approximation of the trading areas of the sites. Areas
where the behavior of the people differs from that predicted by the model can
be subjected to further research, to see what caused the different behavior.

Our interest lies in the geometric interpretation of the model above. The as-
sumptions in the model induce a subdivision of the total area under considera-
tion into regions—the trading areas of the sites—such that the people who live
in the same region all go to the same site. Our assumptions imply that peo-
ple simply get their goods at the nearest site—a fairly realistic situation. This
means that the trading area for a given site consists of all those points for which
that site is closer than any other site. Figure 7.1 gives an example. The sites in
this figure are the capitals of the twelve provinces in the Netherlands.

The model where every point is assigned to the nearest site is called the
Voronoi assignment model. The subdivision induced by this model is called
the Voronoi diagram of the set of sites. From the Voronoi diagram we can
derive all kinds of information about the trading areas of the sites and their
relations. For example, if the regions of two sites have a common boundary
then these two sites are likely to be in direct competition for customers that
live in the boundary region.

The Voronoi diagram is a versatile geometric structure. We have described
an application to social geography, but the Voronoi diagram has applications
in physics, astronomy, robotics, and many more fields. It is also closely linked
to another important geometric structure, the so-called Delaunay triangulation,
which we shall encounter in Chapter 9. In the current chapter we shall confine
ourselves to the basic properties and the construction of the Voronoi diagram
of a set of point sites in the plane.

7.1 Definition and Basic Properties

Denote the Euclidean distance between two points p and q by dist
�
p � q � . In the

plane we have

dist
�
p � q � : �

� �
px � qx � 2 � � py � qy � 2 �

Let P : �	� p1 � p2 � �
�
� � pn � be a set of n distinct points in the plane; these points
are the sites. We define the Voronoi diagram of P as the subdivision of the148



Section 7.1
DEFINITION AND BASIC PROPERTIES

plane into n cells, one for each site in P, with the property that a point q lies in
the cell corresponding to a site pi if and only if dist

�
q � pi ��� dist

�
q � p j � for each

p j � P with j �� i. We denote the Voronoi diagram of P by Vor
�
P � . Abusing the

terminology slightly, we will sometimes use ‘Vor
�
P � ’ or ‘Voronoi diagram’ to

indicate only the edges and vertices of the subdivision. For example, when we
say that a Voronoi diagram is connected we mean that the union of its edges
and vertices forms a connected set. The cell of Vor

�
P � that corresponds to a

site pi is denoted � � pi � ; we call it the Voronoi cell of pi. (In the terminology
of the introduction to this chapter: � � pi � is the trading area of site pi.)

We now take a closer look at the Voronoi diagram. First we study the
structure of a single Voronoi cell. For two points p and q in the plane we
define the bisector of p and q as the perpendicular bisector of the line segment
pq. This bisector splits the plane into two half-planes. We denote the open
half-plane that contains p by h

�
p � q � and the open half-plane that contains q

by h
�
q � p � . Notice that r � h

�
p � q � if and only if dist

�
r� p ��� dist

�
r� q � . From

this we obtain the following observation.

Observation 7.1 � � pi � ��� 1 � j � n 	 j 
� i h
�
pi � p j � .

Thus � � pi � is the intersection of n � 1 half-planes and, hence, a (possibly un-
bounded) open convex polygonal region bounded by at most n � 1 vertices and
at most n � 1 edges.

What does the complete Voronoi diagram look like? We just saw that each
cell of the diagram is the intersection of a number of half-planes, so the Voronoi
diagram is a planar subdivision whose edges are straight. Some edges are line
segments and others are half-lines. Unless all sites are collinear there will be
no edges that are full lines:

Theorem 7.2 Let P be a set of n point sites in the plane. If all the sites are
collinear then Vor

�
P � consists of n � 1 parallel lines. Otherwise, Vor

�
P � is

connected and its edges are either segments or half-lines.

Proof. The first part of the theorem is easy to prove, so assume that not all sites
in P are collinear.

We first show that the edges of Vor
�
P � are either segments or half-lines.

We already know that the edges of Vor
�
P � are parts of straight lines, namely

parts of the bisectors between pairs of sites. Now suppose for a contradiction
that there is an edge e of Vor

�
P � that is a full line. Let e be on the boundary of

the Voronoi cells � � pi � and � � p j � . Let pk � P be a point that is not collinear
with pi and p j. The bisector of p j and pk is not parallel to e and, hence, it

pi p j

pke

intersects e. But then the part of e that lies in the interior of h
�
pk � p j � cannot be

on the boundary of � � p j � , because it is closer to pk than to p j, a contradiction.
It remains to prove that Vor

�
P � is connected. If this were not the case

then there would be a Voronoi cell � � pi � splitting the plane into two. Because
Voronoi cells are convex, � � pi � would consist of a strip bounded by two paral-
lel full lines. But we just proved that the edges of the Voronoi diagram cannot
be full lines, a contradiction.

149



Chapter 7
VORONOI DIAGRAMS

Now that we understand the structure of the Voronoi diagram we investigate its
complexity, that is, the total number of its vertices and edges. Since there are n
sites and each Voronoi cell has at most n � 1 vertices and edges, the complexity
of Vor

�
P � is at most quadratic. It is not clear, however, whether Vor

�
P � can

actually have quadratic complexity: it is easy to construct an example where
a single Voronoi cell has linear complexity, but can it happen that many cells
have linear complexity? The following theorem shows that this is not the case
and that the average number of vertices of the Voronoi cells is less than six.

Theorem 7.3 For n � 3, the number of vertices in the Voronoi diagram of a
set of n point sites in the plane is at most 2n � 5 and the number of edges is at
most 3n � 6.

Proof. If the sites are all collinear then the theorem immediately follows from
Theorem 7.2, so assume this is not the case. We prove the theorem using
Euler’s formula, which states that for any connected planar embedded graph
with mv nodes, me arcs, and m f faces the following relation holds:

mv � me
� m f � 2 �

We cannot apply Euler’s formula directly to Vor
�
P � , because Vor

�
P � has half-v �

infinite edges and is therefore not a proper graph. To remedy the situation we
add one extra vertex v � “at infinity” to the set of vertices and we connect all
half-infinite edges of Vor

�
P � to this vertex. We now have a connected planar

graph to which we can apply Euler’s formula. We obtain the following rela-
tion between nv, the number of vertices of Vor

�
P � , ne, the number of edges of

Vor
�
P � , and n, the number of sites:

�
nv
� 1 � � ne

� n � 2 � (7.1)

Moreover, every edge in the augmented graph has exactly two vertices, so if
we sum the degrees of all vertices we get twice the number of edges. Because
every vertex, including v � , has degree at least three we get

2ne � 3
�
nv
� 1 � � (7.2)

Together with equation (7.1) this implies the theorem.

We close this section with a characterization of the edges and vertices of the
Voronoi diagram. We know that the edges are parts of bisectors of pairs of sites
and that the vertices are intersection points between these bisectors. There is
a quadratic number of bisectors, whereas the complexity of the Vor

�
P � is only

linear. Hence, not all bisectors define edges of Vor
�
P � and not all intersections

are vertices of Vor
�
P � . To characterize which bisectors and intersections define

features of the Voronoi diagram we make the following definition. For a point
q we define the largest empty circle of q with respect to P, denoted by CP

�
q � ,

as the largest circle with q as its center that does not contain any site of P in

q

CP � q �

its interior. The following theorem characterizes the vertices and edges of the
Voronoi diagram.150



Section 7.2
COMPUTING THE VORONOI

DIAGRAM

Theorem 7.4 For the Voronoi diagram Vor
�
P � of a set of points P the follow-

ing holds:
(i) A point q is a vertex of Vor

�
P � if and only if its largest empty circle CP

�
q �

contains three or more sites on its boundary.
(ii) The bisector between sites pi and p j defines an edge of Vor

�
P � if and only

if there is a point q on the bisector such that CP
�
q � contains both pi and

p j on its boundary but no other site.

Proof. (i) Suppose there is a point q such that CP
�
q � contains three or more

sites on its boundary. Let pi, p j, and pk be three of those sites. Since the
interior of CP

�
q � is empty q must be on the boundary of each of � � pi � ,

� � p j � , and � � pk � , and q must be a vertex of Vor
�
P � .

On the other hand, every vertex q of Vor
�
P � is incident to at least three

edges and, hence, to at least three Voronoi cells � � pi � , � � p j � , and � � pk � .
Vertex q must be equidistant to pi, p j, and pk and there cannot be another
site closer to q, since otherwise � � pi � , � � p j � , and � � pk � would not meet
at q. Hence, the interior of the circle with pi, p j, and pk on its boundary
does not contain any site.

(ii) Suppose there is a point q with the property stated in the theorem. Since
CP
�
q � does not contain any sites in its interior and pi and p j are on its

boundary, we have dist
�
q � pi � � dist

�
q � p j ��� dist

�
q � pk � for all 1 � k � n.

It follows that q lies on an edge or vertex of Vor
�
P � . The first part of the

theorem implies that q cannot be a vertex of Vor
�
P � . Hence, q lies on an

edge of Vor
�
P � , which is defined by the bisector of pi and p j.

Conversely, let the bisector of pi and p j define a Voronoi edge. The largest
empty circle of any point q in the interior of this edge must contain pi and
p j on its boundary and no other sites.

7.2 Computing the Voronoi Diagram

In the previous section we studied the structure of the Voronoi diagram. We
now set out to compute it. Observation 7.1 suggests a simple way to do this:
for each site pi, compute the common intersection of the half-planes h

�
pi � p j � ,

with j �� i, using the algorithm presented in Chapter 4. This way we spend
O
�
n logn � time per Voronoi cell, leading to an O

�
n2 logn � algorithm to compute

the whole Voronoi diagram. Can’t we do better? After all, the total complexity
of the Voronoi diagram is only linear. The answer is yes: the plane sweep
algorithm described below—commonly known as Fortune’s algorithm after
its inventor—computes the Voronoi diagram in O

�
n logn � time. You may be

tempted to look for an even faster algorithm, for example one that runs in
linear time. This turns out to be too much to ask: the problem of sorting n
real numbers is reducible to the problem of computing Voronoi diagrams, so
any algorithm for computing Voronoi diagrams must take Ω

�
n logn � time in

the worst case. Hence, Fortune’s algorithm is optimal. 151



Chapter 7
VORONOI DIAGRAMS

The strategy in a plane sweep algorithm is to sweep a horizontal line—the
sweep line—from top to bottom over the plane. While the sweep is performed
information is maintained regarding the structure that one wants to compute.
More precisely, information is maintained about the intersection of the struc-
ture with the sweep line. While the sweep line moves downwards the informa-
tion does not change, except at certain special points—the event points.

Let’s try to apply this general strategy to the computation of the Voronoi di-
agram of a set P � � p1 � p2 � �
� � � pn � of point sites in the plane. According to
the plane sweep paradigm we move a horizontal sweep line � from top to bot-
tom over the plane. The paradigm involves maintaining the intersection of the
Voronoi diagram with the sweep line. Unfortunately this is not so easy, because
the part of Vor

�
P � above � depends not only on the sites that lie above � but also

on sites below � . Stated differently, when the sweep line reaches the topmost
vertex of the Voronoi cell � � pi � it has not yet encountered the corresponding
site pi. Hence, we do not have all the information needed to compute the ver-
tex. We are forced to apply the plane sweep paradigm in a slightly different
fashion: instead of maintaining the intersection of the Voronoi diagram with
the sweep line, we maintain information about the part of the Voronoi diagram
of the sites above � that cannot be changed by sites below � .

Denote the closed half-plane above � by ��� . What is the part of the Voronoi
diagram above � that cannot be changed anymore? In other words, for which
points q � ��� do we know for sure what their nearest site is? The distance of

�

a point q � ��� to any site below � is greater than the distance of q to � itself.
Hence, the nearest site of q cannot lie below � if q is at least as near to some site
pi � ��� as q is to � . The locus of points that are closer to some site pi � ��� than
to � is bounded by a parabola. Hence, the locus of points that are closer to any
site above � than to � itself is bounded by parabolic arcs. We call this sequence

�

of parabolic arcs the beach line. Another way to visualize the beach line is the
following. Every site pi above the sweep line defines a complete parabola βi.
The beach line is the function that—for each x-coordinate—passes through the
lowest point of all parabolas.

Observation 7.5 The beach line is x-monotone, that is, every vertical line in-
tersects it in exactly one point.

It is easy to see that one parabola can contribute more than once to the
beach line. We’ll worry later about how many pieces there can be. Notice that
the breakpoints between the different parabolic arcs forming the beach line lie
on edges of the Voronoi diagram. This is not a coincidence: the breakpoints
exactly trace out the Voronoi diagram while the sweep line moves from top
to bottom. These properties of the beach line can be proved using elementary
geometric arguments.

So, instead of maintaining the intersection of Vor
�
P � with � we maintain

the beach line as we move our sweep line � . We do not maintain the beach line
explicitly, since it changes continuously as � moves. For the moment let’s ig-
nore the issue of how to represent the beach line until we understand where and152



Section 7.2
COMPUTING THE VORONOI

DIAGRAM

how its combinatorial structure changes. This happens when a new parabolic
arc appears on it, and when a parabolic arc shrinks to a point and disappears.

First we consider the events where a new arc appears on the beach line. One
occasion where this happens is when the sweep line � reaches a new site. The
parabola defined by this site is at first a degenerate parabola with zero width: a
vertical line segment connecting the new site to the beach line. As the sweep
line continues to move downward the new parabola gets wider and wider. The
part of the new parabola below the old beach line is now a part of the new
beach line. Figure 7.2 illustrates this process. We call the event where a new
site is encountered a site event.

� � � Figure 7.2
A new arc appears on the beach line
because a site is encountered

What happens to the Voronoi diagram at a site event? Recall that the break-
points on the beach line trace out the edges of the Voronoi diagram. At a site
event two new breakpoints appear, which start tracing out edges. In fact, the

�

new breakpoints coincide at first, and then move in opposite directions to trace
out the same edge. Initially, this edge is not connected to the rest of the Voronoi
diagram above the sweep line. Later on—we will see shortly exactly when this
will happen—the growing edge will run into another edge, and it becomes con-
nected to the rest of the diagram.

So now we understand what happens at a site event: a new arc appears on
the beach line, and a new edge of the Voronoi diagram starts to be traced out.
Is it possible that a new arc appears on the beach line in any other way? The
answer is no:

Lemma 7.6 The only way in which a new arc can appear on the beach line is
through a site event.

Proof. Suppose for a contradiction that an already existing parabola β j defined
by a site p j breaks through the beach line. There are two ways in which this
could happen.

The first possibility is that β j breaks through in the middle of an arc of a
parabola βi. The moment this is about to happen, βi and β j are tangent, that

�

β j

is, they have exactly one point of intersection. Let � y denote the y-coordinate
of the sweep line at the moment of tangency. If p j : � �

p j 	 x � p j 	 y � , then the
parabola β j is given by

β j : � y � 1
2
�
p j 	 y � � y �

�
x2 � 2p j 	 xx � p2

j 	 x � p2
j 	 y � � 2

y � �

The formula for βi is similar, of course. Using that both p j 	 y and pi 	 y are larger
than � y, it is easy to show that it is impossible that βi and β j have only one 153



Chapter 7
VORONOI DIAGRAMS

point of intersection. Hence, a parabola β j never breaks through in the middle
of an arc of another parabola βi.

�

β j

The second possibility is that β j appears in between two arcs. Let these
arcs be part of parabolas βi and βk. Let q be the intersection point of βi and
βk at which β j is about to appear on the beach line, and assume that βi is on
the beach line left of q and βk is on the beach line right of q, as in Figure 7.3.
Then there is a circle C that passes through pi, p j, and pk, the sites defining
the parabolas. This circle is also tangent to the sweep line � . The cyclic order
on C, starting at the point of tangency with � and going clockwise, is pi � p j � pk,
because β j is assumed to appear in between the arcs of βi and βk. Consider
an infinitesimal motion of the sweep line downward while keeping the circle
C tangent to � ; see Figure 7.3. Then C cannot have empty interior and still

Figure 7.3
The situation when β j would appear on
the beach line, and the circle when the

sweep line has proceeded

p j

pi

pk

q

βkβi

β j

�

C

p j

pi

pk
q

C

�

pass through p j: either pi or pk will penetrate the interior. Therefore, in a suf-
ficiently small neighborhood of q the parabola β j cannot appear on the beach
line when the sweep line moves downward, because either pi or pk will be
closer to � than p j.

An immediate consequence of the lemma is that the beach line consists of at
most 2n � 1 parabolic arcs: each site encountered gives rise to one new arc and
the splitting of at most one existing arc into two, and there is no other way an
arc can appear on the beach line.

Figure 7.4
An arc disappears from the beach line

�
q

pi

p j

pk

�α �
α α ���

p j

pkpi

�

p j

pkpi

q

The second type of event in the plane sweep algorithm is where an existing arc
of the beach line shrinks to a point and disappears, as in Figure 7.4. Let α �154



Section 7.2
COMPUTING THE VORONOI

DIAGRAM

be the disappearing arc, and let α and α ��� be the two neighboring arcs of α �
before it disappears. The arcs α and α � � cannot be part of the same parabola;
this possibility can be excluded in the same way as the first possibility in the
proof of Lemma 7.6 was excluded. Hence, the three arcs α, α � , and α ��� are
defined by three distinct sites pi, p j, and pk. At the moment α � disappears, the
parabolas defined by these three sites pass through a common point q. Point q
is equidistant from � and each of the three sites. Hence, there is a circle passing
through pi, p j, and pk with q as its center and whose lowest point lies on � .
There cannot be a site in the interior of this circle: such a site would be closer
to q than q is to � , contradicting the fact that q is on the beach line. It follows
that the point q is a vertex of the Voronoi diagram. This is not very surprising,
since we observed earlier that the breakpoints on the beach line trace out the
Voronoi diagram. So when an arc disappears from the beach line and two
breakpoints meet, two edges of the Voronoi diagram meet as well. We call the
event where the sweep line reaches the lowest point of a circle through three
sites defining consecutive arcs on the beach line a circle event. From the above
we can conclude the following lemma.

Lemma 7.7 The only way in which an existing arc can disappear from the
beach line is through a circle event.

Now we know where and how the combinatorial structure of the beach line
changes: at a site event a new arc appears, and at a circle event an existing
arc drops out. We also know how this relates to the Voronoi diagram under
construction: at a site event a new edge starts to grow, and at a circle event
two growing edges meet to form a vertex. It remains to find the right data
structures to maintain the necessary information during the sweep. Our goal
is to compute the Voronoi diagram, so we need a data structure that stores
the part of the Voronoi diagram computed thus far. We also need the two
‘standard’ data structures for any sweep line algorithm: an event queue and
a structure that represents the status of the sweep line. Here the latter structure
is a representation of the beach line. These data structures are implemented in
the following way.

We store the Voronoi diagram under construction in our usual data struc-
ture for subdivisions, the doubly-connected edge list. A Voronoi diagram,
however, is not a true subdivision as defined in Chapter 2: it has edges that
are half-lines or full lines, and these cannot be represented in a doubly-
connected edge list. During the construction this is not a problem, because
the representation of the beach line—described next—will make it possible
to access the relevant parts of the doubly-connected edge list efficiently
during its construction. But after the computation is finished we want to
have a valid doubly-connected edge list. To this end we add a big bounding
box to our scene, which is large enough so that it contains all vertices of
the Voronoi diagram. The final subdivision we compute will then be the
bounding box plus the part of the Voronoi diagram inside it.

The beach line is represented by a balanced binary search tree
�

; it is 155



Chapter 7
VORONOI DIAGRAMS

the status structure. Its leaves correspond to the arcs of the beach line—
which is x-monotone—in an ordered manner: the leftmost leaf represents
the leftmost arc, the next leaf represents the second leftmost arc, and so on.
Each leaf µ stores the site that defines the arc it represents. The internal

�

�

pi
p j

pk pl

p j pk pl

�
pi � p j � �

pk � pl �

�
p j � pk �

pi

nodes of
�

represent the breakpoints on the beach line. A breakpoint is
stored at an internal node by an ordered tuple of sites � pi � p j � , where pi

defines the parabola left of the breakpoint and p j defines the parabola to the
right. Using this representation of the beach line, we can find in O

�
logn �

time the arc of the beach line lying above a new site. At an internal node,
we simply compare the x-coordinate of the new site with the x-coordinate
of the breakpoint, which can be computed from the tuple of sites and the
position of the sweep line in constant time. Note that we do not explicitly
store the parabolas.

In
�

we also store pointers to the other two data structures used during
the sweep. Each leaf of

�
, representing an arc α, stores one pointer to a

node in the event queue, namely, the node that represents the circle event in
which α will disappear. This pointer is nil if no circle event exists where α
will disappear, or this circle event hasn’t been detected yet. Finally, every
internal node ν has a pointer to a half-edge in the doubly-connected edge
list of the Voronoi diagram. More precisely, ν has a pointer to one of the
half-edges of the edge being traced out by the breakpoint represented by ν.

The event queue � is implemented as a priority queue, where the priority of
an event is its y-coordinate. It stores the upcoming events that are already
known. For a site event we simply store the site itself. For a circle event
the event point that we store is the lowest point of the circle, with a pointer
to the leaf in

�
that represents the arc that will disappear in the event.

All the site events are known in advance, but the circle events are not. This
brings us to one final issue that we must discuss, namely the detection of circle
events.

During the sweep the beach line changes its topological structure at every
event. This may cause new triples of consecutive arcs to appear on the beach
line and it may cause existing triples to disappear. Our algorithm will make sure
that for every three consecutive arcs on the beach line that define a potential
circle event, the potential event is stored in the event queue � . There are two
subtleties involved in this. First of all, there can be consecutive triples whose
two breakpoints do not converge, that is, the directions in which they move are
such that they will not meet in the future; this happens when the breakpoints
move along two bisectors away from the intersection point. In this case the
triple does not define a potential circle event. Secondly, even if a triple has
converging breakpoints, the corresponding circle event need not take place: it
can happen that the triple disappears (for instance due to the appearance of a
new site on the beach line) before the event has taken place. In this case we
call the event a false alarm.

So what the algorithm does is this. At every event, it checks all the new
triples of consecutive arcs that appear. For instance, at a site event we can156



Section 7.2
COMPUTING THE VORONOI

DIAGRAM

get three new triples: one where the new arc is the left arc of the triple, one
where it is the middle arc, and one where it is the right arc. When such a new
triple has converging breakpoints, the event is inserted into the event queue � .
Observe that in the case of a site event, the triple with the new arc being the
middle one can never cause a circle event, because the left and right arc of
the triple come from the same parabola and therefore the breakpoints must
diverge. Furthermore, for all disappearing triples it is checked whether they
have a corresponding event in � . If so, the event is apparently a false alarm,
and it is deleted from � . This can easily be done using the pointers we have
from the leaves in

�
to the corresponding circle events in � .

Lemma 7.8 Every Voronoi vertex is detected by means of a circle event.

Proof. For a Voronoi vertex q, let pi, p j, and pk be the three sites through which
a circle C

�
pi � p j � pk � passes with no sites in the interior. By Theorem 7.4, such

a circle and three sites indeed exist. For simplicity we only prove the case
where no other sites lie on C

�
pi � p j � pk � , and the lowest point of C

�
pi � p j � pk � is

not one of the defining sites. Assume without loss of generality that from the
lowest point of C

�
pi � p j � pk � , the clockwise traversal of C

�
pi � p j � pk � encounters

the sites pi � p j � pk in this order.
We must show that just before the sweep line reaches the lowest point of

C
�
pi � p j � pk � , there are three consecutive arcs α, α � and α ��� on the beach line

defined by the sites pi, p j, and pk. Only then will the circle event take place.
Consider the sweep line an infinitesimal amount before it reaches the lowest
point of C

�
pi � p j � pk � . Since C

�
pi � p j � pk � doesn’t contain any other sites inside p j

pi

pk

C � pi � p j � pk �or on it, there exists a circle through pi and p j that is tangent to the sweep
line, and doesn’t contain sites in the interior. So there are adjacent arcs on the
beach line defined by pi and p j. Similarly, there are adjacent arcs on the beach
line defined by p j and pk. It is easy to see that the two arcs defined by p j are
actually the same arc, and it follows that there are three consecutive arcs on the
beach line defined by pi, p j, and pk. Therefore, the corresponding circle event
is in � just before the event takes place, and the Voronoi vertex is detected.

We can now describe the plane sweep algorithm in detail. Notice that after all
events have been handled and the event queue � is empty, the beach line hasn’t
disappeared yet. The breakpoints that are still present correspond to the half-
infinite edges of the Voronoi diagram. As stated earlier, a doubly-connected
edge list cannot represent half-infinite edges, so we must add a bounding box
to the scene to which these edges can be attached. The overall structure of the
algorithm is as follows.

157



Chapter 7
VORONOI DIAGRAMS

Algorithm VORONOIDIAGRAM(P)
Input. A set P : � � p1 � � �
� � pn � of point sites in the plane.
Output. The Voronoi diagram Vor

�
P � given inside a bounding box in a doubly-

connected edge list � .
1. Initialize the event queue � with all site events, initialize an empty status

structure
�

and an empty doubly-connected edge list � .
2. while � is not empty
3. do Remove the event with largest y-coordinate from � .
4. if the event is a site event, occurring at site pi

5. then HANDLESITEEVENT
�
pi �

6. else HANDLECIRCLEEVENT
�
γ � , where γ is the leaf of

�
repre-

senting the arc that will disappear
7. The internal nodes still present in

�
correspond to the half-infinite edges

of the Voronoi diagram. Compute a bounding box that contains all ver-
tices of the Voronoi diagram in its interior, and attach the half-infinite
edges to the bounding box by updating the doubly-connected edge list
appropriately.

8. Traverse the half-edges of the doubly-connected edge list to add the cell
records and the pointers to and from them.

The procedures to handle the events are defined as follows.

HANDLESITEEVENT(pi)
1. If

�
is empty, insert pi into it (so that

�
consists of a single leaf storing

pi) and return. Otherwise, continue with steps 2– 5.
2. Search in

�
for the arc α vertically above pi. If the leaf representing α

has a pointer to a circle event in � , then this circle event is a false alarm
and it must be deleted from � .

3. Replace the leaf of
�

that represents α with a subtree having three leaves.
The middle leaf stores the new site pi and the other two leaves store the
site p j that was originally stored with α. Store the tuples � p j � pi � and

� pi � p j � representing the new breakpoints at the two new internal nodes.
Perform rebalancing operations on

�
if necessary.

4. Create new half-edge records in the Voronoi diagram structure for the
edge separating � � pi � and � � p j � , which will be traced out by the two
new breakpoints.

5. Check the triple of consecutive arcs where the new arc for pi is the left arc
to see if the breakpoints converge. If so, insert the circle event into � and
add pointers between the node in

�
and the node in � . Do the same for

the triple where the new arc is the right arc.

HANDLECIRCLEEVENT(γ)
1. Delete the leaf γ that represents the disappearing arc α from

�
. Update

the tuples representing the breakpoints at the internal nodes. Perform re-
balancing operations on

�
if necessary. Delete all circle events involving

α from � ; these can be found using the pointers from the predecessor and
the successor of γ in

�
. (The circle event where α is the middle arc is

currently being handled, and has already been deleted from � .)158



Section 7.2
COMPUTING THE VORONOI

DIAGRAM

2. Add the center of the circle causing the event as a vertex record to the
doubly-connected edge list � storing the Voronoi diagram under construc-
tion. Create two half-edge records corresponding to the new breakpoint
of the beach line. Set the pointers between them appropriately. Attach the
three new records to the half-edge records that end at the vertex.

3. Check the new triple of consecutive arcs that has the former left neighbor
of α as its middle arc to see if the two breakpoints of the triple converge. If
so, insert the corresponding circle event into � . and set pointers between
the new circle event in � and the corresponding leaf of

�
. Do the same

for the triple where the former right neighbor is the middle arc.

Lemma 7.9 The algorithm runs in O
�
n logn � time and it uses O

�
n � storage.

Proof. The primitive operations on the tree
�

and the event queue � , such as
inserting or deleting an element, take O

�
logn � time each. The primitive opera-

tions on the doubly-connected edge list take constant time. To handle an event
we do a constant number of such primitive operations, so we spend O

�
logn �

time to process an event. Obviously, there are n site events. As for the number
of circle events, we observe that every such event that is processed defines a
vertex of Vor

�
P � . Note that false alarms are deleted from � before they are

processed. They are created and deleted while processing another, real event,
and the time we spend on them is subsumed under the time we spend to process
this event. Hence, the number of circle events that we process is at most 2n � 5.
The time and storage bounds follow.

Before we state the final result of this section we should say a few words about
degenerate cases.

The algorithm handles the events from top to bottom, so there is a degen-
eracy when two or more events lie on a common horizontal line. This hap-
pens, for example, when there are two sites with the same y-coordinate. These
events can be handled in any order when their x-coordinates are distinct, so
we can break ties between events with the same y-coordinate but with differ-
ent x-coordinates arbitrarily. However, if this happens right at the start of the
algorithm, that is, if the second site event has the same y-coordinate as the first
site event, then special code is needed because there is no arc above the second
site yet. Now suppose there are event points that coincide. For instance, there

zero-length edge

will be several coincident circle events when there are four or more co-circular
sites, such that the interior of the circle through them is empty. The center of
this circle is a vertex of the Voronoi diagram. The degree of this vertex is at
least four. We could write special code to handle such degenerate cases, but
there is no need to do so. What will happen if we let the algorithm handle
these events in arbitrary order? Instead of producing a vertex with degree four,
it will just produce two vertices with degree three at the same location, with a
zero length edge between them. These degenerate edges can be removed in a
post-processing step, if required.

Besides these degeneracies in choosing the order of the events we may also
encounter degeneracies while handling an event. This occurs when a site pi 159



Chapter 7
VORONOI DIAGRAMS

that we process happens to be located exactly below the breakpoint between
two arcs on the beach line. In this case the algorithm splits either of these
two arcs and inserts the arc for pi in between the two pieces, one of which
has zero length. This piece of zero length now is the middle arc of a triple
that defines a circle event. The lowest point of this circle coincides with pi.
The algorithm inserts this circle event into the event queue � , because there
are three consecutive arcs on the beach line that define it. When this circle
event is handled, a vertex of the Voronoi diagram is correctly created and the
zero length arc can be deleted later. Another degeneracy occurs when three
consecutive arcs on the beach line are defined by three collinear sites. Then
these sites don’t define a circle, nor a circle event.

We conclude that the above algorithm handles degenerate cases correctly.

Theorem 7.10 The Voronoi diagram of a set of n point sites in the plane can
be computed with a sweep line algorithm in O

�
n logn � time using O

�
n � storage.

7.3 Notes and Comments

Although it is beyond the scope of this book to give an extensive survey of
the history of Voronoi diagrams it is appropriate to make a few historical re-
marks. Voronoi diagrams are often attributed to Dirichlet [124]—hence the
name Dirichlet tessellations that is sometimes used—and Voronoi [331, 332].
They can already be found in Descartes’s treatment of cosmic fragmentation
in Part III of his Principia Philosophiae, published in 1644. Also in this cen-
tury the Voronoi diagram has been re-discovered several times. In biology this
even happened twice in a very short period. In 1965 Brown [54] studied the
intensity of trees in a forest. He defined the area potentially available to a
tree, which was in fact the Voronoi cell of that tree. One year later Mead [241]
used the same concept for plants, calling the Voronoi cells plant polygons. By
now there is an impressive amount of literature concerning Voronoi diagrams
and their applications in all kinds of research areas. The book by Okabe et
al. [264] contains an ample treatment of Voronoi diagrams and their applica-
tions. We confine ourselves in this section to a discussion of the various aspects
of Voronoi diagrams encountered in the computational geometry literature.

In this chapter we have proved some properties of the Voronoi diagram, but
it has many more. For example, if one connects all the pairs of sites whose
Voronoi cells are adjacent then the resulting set of segments forms a triangu-
lation of the point set, called the Delaunay triangulation. This triangulation,
which has some very nice properties, is the topic of Chapter 9.

There is a beautiful connection between Voronoi diagrams and convex
polyhedra. Consider the transformation that maps a point p � � px � py � in � 2 to
the non-vertical plane h

�
p � : z � 2pxx � 2pyy � � p2

x
� p2

y � in � 3 . Geometrically,

z � x2 � y2

� px � py � 0 �

h
�
p � is the plane that is tangent to the unit paraboloid � : z � x2 � y2 at the

point vertically above
�
px � py � 0 � . For a set P of point sites in the plane, let H

�
P �160



Section 7.3
NOTES AND COMMENTS

be the set of planes that are the images of the sites in P. Now consider the con-
vex polyhedron � that is the intersection of all positive half-spaces defined by
the planes in H

�
P � , that is, � : � � h � H � P � h � , where h � denotes the half-space

above h. Surprisingly, if we project the edges and vertices of the polyhedron
vertically downwards onto the xy-plane, we get the Voronoi diagram of P [140].
See Chapter 11 for a more extensive description of this transformation.

We have studied Voronoi diagrams in their most basic setting, namely for a set
of point sites in the Euclidean plane. The first optimal O

�
n logn � time algorithm

for this case was a divide-and-conquer algorithm presented by Shamos and
Hoey [314]; since then many other optimal algorithms have been developed.
The plane sweep algorithm that we described is due to Fortune [155]. For-
tune’s original description of the algorithm is a little different from ours, which
follows the interpretation of the algorithm given by Guibas and Stolfi [176].

Voronoi diagrams can be generalized in many ways [16, 264]. One general-
ization is to point sets in higher-dimensional spaces. In � d the maximum com-
binatorial complexity of the Voronoi diagram of a set of n point sites (the max-
imum number of vertices, edges, and so on, of the diagram) is Θ

�
n � d � 2 � � [207]

and it can be computed in O
�
n logn � n � d � 2 � � optimal time [72, 111, 312]. The

fact that the dual of the Voronoi diagram is a triangulation of the set of sites, and
the connection between Voronoi diagrams and convex polyhedra as discussed
above, still hold in higher dimensions.

Another generalization concerns the metric that is used. In the L1-metric
or Manhattan metric, the distance between two points p and q is defined as

dist1
�
p � q � : ��� px � qx � � � py � qy � ;

the sum of the absolute differences in the x- and y-coordinates. In a Voronoi
diagram in the L1-metric, all edges are horizontal, vertical, or diagonal (an
angle of 45 	 with the coordinate axes). In the more general Lp-metric, the
distance between two points p and q is defined as

distp
�
p � q � : � p

�
� px � qx � p � � py � qy � p �

Note that the L2-metric is simply the Euclidean metric. There are several
papers dealing with Voronoi diagrams in these metrics [96, 217, 221]. One
can also define a distance function by assigning a weight to each site. Now
the distance of a site to a point is the Euclidean distance to the point, plus
its additive weight. The resulting diagrams are called weighted Voronoi dia-
grams [155]. The weight can also be used to define the distance of a site to a
point as the Euclidean distance times the weight. Diagrams based on the multi-
plicatively weighted distance are also called weighted Voronoi diagrams [17].
Power diagrams [13, 14, 15, 18] are another generalization of Voronoi dia-
grams where a different distance function is used. It is even possible to drop
the distance function altogether and define the Voronoi diagram in terms of bi-
sectors between any two sites only. Such diagrams are called abstract Voronoi
diagrams [208, 209, 210, 243]. 161



Chapter 7
VORONOI DIAGRAMS

Other generalizations concern the shape of the sites. Such generalizations
occur when the Voronoi diagram is used for motion planning purposes. An
important special case is the Voronoi diagram of the edges of a simple polygon,
interior to the polygon itself. This Voronoi diagram is also known as the medial
axis or skeleton, and it has applications in shape analysis. The medial axis can
be computed in time linear in the number of edges of the polygon [101].

Instead of partitioning the space into regions according to the closest sites,
one can also partition it according to the k closest sites, for some 1 � k � n � 1.
The diagrams obtained in this way are called higher-order Voronoi diagrams,
and for given k the diagram is called the order-k Voronoi diagram [1, 19, 50,
77]. Note that the order-1 Voronoi diagram is nothing more than the stan-
dard Voronoi diagram. The order-

�
n � 1 � Voronoi diagram is also called the

farthest-point Voronoi diagram, because the Voronoi cell of a point pi now
is the region of points for which pi is the farthest site. The maximum com-
plexity of the order-k Voronoi diagram of a set of n point sites in the plane
is Θ

�
k
�
n � k � � [218]. Currently the best known algorithm for computing the

order-k Voronoi diagram runs in O
�
n log3 n � k

�
n � k �
� time [1].

7.4 Exercises

7.1 Prove that for any n � 3 there is a set of n point sites in the plane such
that one of the cells of Vor

�
P � has n � 1 vertices.

7.2 Show that Theorem 7.3 implies that the average number of vertices of a
Voronoi cell is less than six.

7.3 Show that Ω
�
n logn � is a lower bound for computing Voronoi diagrams

by reducing the sorting problem to the problem of computing Voronoi
diagrams. You can assume that the Voronoi diagram algorithm should
be able to compute for every vertex of the Voronoi diagram its incident
edges in cyclic order around the vertex.

7.4 Prove that the breakpoints of the beach line, as defined in Section 7.2,
trace out the edges of the Voronoi diagram while the sweep line moves
from top to bottom.

7.5 Give an example where the parabola defined by some site pi contributes
more than one arc to the beach line. Can you give an example where it
contributes a linear number of arcs?

7.6 Give an example of six sites such that the plane sweep algorithm encoun-
ters the six site events before any of the circle events. The sites should lie
in general position: no three sites on a line and no four sites on a circle.

7.7 Do the breakpoints of the beach line always move downwards when the
sweep line moves downwards? Prove this or give a counterexample.162



Section 7.4
EXERCISES

7.8 Write a procedure to compute a big enough bounding box from the in-
complete doubly-connected edge list and the tree

�
after the sweep is

completed. The box should contain all sites and all Voronoi vertices.

7.9 Write a procedure to add all cell records and the corresponding pointers
to the incomplete doubly-connected edge list after the bounding box has
been added. That is, fill in the details of line 8 of Algorithm VORONOIDI-
AGRAM.

7.10 Let P be a set of n points in the plane. Give an O
�
n logn � time algorithm

to find two points in P that are closest together. Show that your algorithm
is correct.

7.11 Let P be a set of n points in the plane. Give an O
�
n logn � time algorithm

to find for each point p in P another point in P that is closest to it.

7.12 Let the Voronoi diagram of a point set P be stored in a doubly-connected
edge list inside a bounding box. Give an algorithm to compute all points
of P that lie on the boundary of the convex hull of P in time linear in the
output size. Assume that your algorithm receives as its input a pointer to
the record of some half-edge whose origin lies on the bounding box.

7.13* In the Voronoi assignment model the goods or services that the con-
sumers want to acquire have the same market price at every site. Sup-
pose this is not the case, and that the price of the good at site pi is wi.
The trading areas of the sites now correspond to the cells in the weighted
Voronoi diagram of the sites (see Section 7.3), where site pi has an ad-
ditive weight wi. Generalize the sweep line algorithm of Section 7.2 to
this case.

7.14* Suppose that we are given a subdivision of the plane into n convex re-
gions. We suspect that this subdivision is a Voronoi diagram, but we do
not know the sites. Develop an algorithm that finds a set of n point sites
whose Voronoi diagram is exactly the given subdivision, if such a set
exists.

163


