
Camera Calibration, Scene Motion and Structure recovery frompoint correspondences and fundamental matricesQ.-T. Luong�and O.D. FaugerasI.N.R.I.A.2004 route des Lucioles, B.P. 9306902 Sophia-Antipolis, Franceluong,faugeras@sophia.inria.frAbstractWe address the problem of estimating three-dimensional motion, and structure from motionwith an uncalibrated moving camera. We show that point correspondences between three im-ages, and the fundamental matrices computed from these point correspondences, are su�cientto recover the internal orientation of the camera (its calibration), the motion parameters, and tocompute coherent perspective projection matrices which enable us to reconstruct 3-D structureup to a similarity. In contrast with other methods, no calibration object with a known 3-Dshape is needed, and no limitations are put upon the unknown motions to be performed or theparameters to be recovered, as long as they de�ne a projective camera.The theory of the method, which is based on the constraint that the observed points arepart of a static scene, thus allowing us to link the intrinsic parameters and the fundamentalmatrix via the absolute conic, is �rst detailed. Several algorithms are then presented, and theirperformances compared by means of extensive simulations. An application of the method to abinocular or trinocular stereo rig is also considered. It is illustrated by several experiments withreal images which conclude the paper.1 Introduction and motivationsThe problem of estimating the three-dimensional motion of a camera from a number of tokenmatches has received a lot of attention in the last �fteen years. Having detected and matchedsuch tokens as points or lines in two or more images, researchers have developed methodsfor estimating the three-dimensional camera displacement, assuming a moving camera and astatic object. This problem is equivalent to the problem of estimating the three-dimensionalmotion of an object observed by a static camera. The camera is modelled as a pinhole and itsinternal parameters are supposed to be known (the pinhole model and the internal parametersare de�ned later). This is the full perspective case. Other researchers have assumed less generalimage formation models such as the orthographic model, for example Ullman [53]. In this articlewe will assume the most general case of the full perspective image formation model.When matching points, two views are su�cient and the computation of the motion is usuallybased upon the estimation of a matrix called the Essential, or E-matrix after Longuet-Higgins[30] who �rst published a linear algorithm (called the eight-point algorithm because it requireseight point correspondences over two frames) for estimating this matrix and recover the cameradisplacement from it from a number of point matches. The properties of the E-matrix are nowwell understood after the work of Faugeras, Huang, and Maybank [20, 14, 36]. This matrix must�Present address: University of California, EECS Cory Hall 211-215, Berkeley CA 947201



satisfy a number of algebraic constraints which are not taken into account by the eight-pointalgorithm. Taking these constraints into account forces to use nonlinear methods such as the�ve-point algorithm of Faugeras and Maybank [14].Assuming that the points being matched are attached to a plane makes things even simpleras shown for example by the work of Tsai and Huang [50] or that of Faugeras and Lustman [13]When matching lines, things are a bit more complicated since at least three views are nec-essary to estimate the 3-D motion. Surprisingly enough, nonlinear estimation algorithms werediscovered �rst, for example by Liu and Huang, Faugeras, Lustman, Toscani, and Spetsakis andAloimonos [29, 16, 46]. The reason for this is that the analog of the E-matrix for lines is tensorof order three which has not yet been analysed as thoroughly as the E-matrix (see [55] though).Nonetheless, linear estimation algorithms have been published by Liu and Huang [28].The thrust of this paper is to extend the previous results to the case where the internalparameters of the camera are unknown, still assuming the full perspective model. We alsoassume that we are given point correspondences, therefore excluding the case of lines. Ourguiding light will be projective geometry which we found to be extremely useful both from thetheoretical point of view in that it has allowed us to express the geometry of the problem ina much simpler way and from the practical point of view in that this formal simplicity can betransported to algorithmic simplicity.We will show that if we take three snapshots of the environment, each time establishingsu�ciently many point correspondences between the three pairs of images, we can a) recoverthe epipolar geometry of each pair of images b) recover the intrinsic parameters of the camera(which we assume not to be changing during the motion) and c) recover the motion of thecamera (using already published algorithms). The focus of the paper is on point b), point a)being described elsewhere,Section 2 will be dedicated to the geometric and algebraic modelling of the problem and toa description of the relations of the present approach to previous ones. In particular, we will tiethe intrinsic parameters to the image of the absolute conic, de�ne the fundamental matrix whichis analog to the essential matrix in the uncalibrated case, relate it to the intrinsic parameters.We will also de�ne the Kruppa equations from which we will be able to estimate the intrinsicparameters and relate them to the work on the essential matrix. Section 3 will build upon thetheoretical results of section 2 and describe a method for recovering the intrinsic parametersof the camera and therefore its motion, as illustrated in section 4. As an application of theseideas, in section 5 we assume that we have two or three cameras rigidly moving (a stereo rig)instead of one and show how to calibrate the rig completely, i.e. how to compute the intrinsicparameters of each camera and the relative displacement between the two or three. Finally, insection 7, we conclude, and compare our work to that of others.2 Background and TheoryIn this section we lay the ground for the solution of the problem of estimating the motion ofa camera with unknown intrinsic parameters. First we consider the case of a single cameraand introduce the camera model and the intrinsic parameters. We make heavy use of simpleprojective geometry. We show that even for a single camera, projective geometry o�ers a richdescription of the geometry of the problem through the introduction of the absolute conic whichis fundamental in motion analysis. We then consider the case of two cameras and describetheir geometric relations. We show that these relations can be summarized very simply by theepipolar correspondence (geometric viewpoint) or the fundamental matrix (algebraic viewpoint).We then describe the relationship between the fundamental matrix and the intrinsic parametersof the camera through various complementary approaches.2



2.1 The pinhole model, the intrinsic and extrinsic parameters, andthe absolute conicThe camera model which we consider is the pinhole model. In this model, the camera performsa perspective projection of an object point M onto a pixel m in the retinal plane through theoptical center C (see �gure 1). The optical axis is the line going through C and perpendicularto the retinal plane. It pierces that plane at the principal point c. If we consider an orthonor-mal system of coordinates in the retinal plane, centered at c, say (c; xc; yc) we can de�ne athree-dimensional orthonormal system of coordinates centered at the optical center C with twoaxes of coordinates parallel to the retinal ones and the third one parallel to the optical axis(C;XC ; YC ; ZC). In these two systems of coordinates, the relationship between the coordinatesof m, image of M is particularly simplexc = �f XCZC yc = �f YCZCIt is nonlinear but if we write it using the homogeneous coordinates of m and M , it becomeslinear: 24 TCZCxcTCZCycTCZC 35 = 24 �f 0 0 00 �f 0 00 0 1 0 35 = 2664 TCXCTCYCTCZCTC 3775 (1)In this equation ZCxc; ZCyc and ZC should be considered as the projective coordinatesXc; Yc; Zcof the pixel m and TCXC ; TCYC ; TCZC ; TC as the projective coordinates XC ;YC ;ZC ;TC of thepoint M . We verify on this equation that the projective coordinates are de�ned up to a scalefactor since multiplying them by an arbitrary nonzero factor does not change the euclideancoordinates of either m or M .The main property of this camera model is thus that the relationship between the worldcoordinates and the pixel coordinates is linear projective. This property is independent of thechoice of the coordinate systems in the retinal plane or in the three-dimensional space. Inparticular we have indicated in �gure 1 another world coordinate system (O;X; Y;Z) and anotherretinal coordinate system (o; u; v).The coordinate system (O;X; Y;Z) is related to the coordinate system (C;XC ; YC ; ZC) by arigid displacement described by the rotation matrix R and the translation vector t. If we thinkof (O;x; y; z) as the laboratory coordinate system, the displacement describes the pose of thecamera in the laboratory. The parameters describing the displacement are called the extrinsiccamera parameters. The coordinate system (o; u; v) is related to the the coordinate system(c; xc; yc) by a change of scale of magnitude ku and kv along the u- and v-axes, respectively, arotation of angle �=2� � around o followed by a translation [u0; v0]T . The coordinate system(o; u; v) is the cordinate system that we use when we address the pixels in an image. It isusually centered at the upper left hand corner of the image which is usually not the point c,the pixels are usually not square and have aspect ratios depending on the actual size of thephotosensitive cells of the camera as well as on the idiosyncracies of the acquisition system. Theangle � models possible deviation from orthogonality of the cells' arrangement on the retina ora possible misalignment of the retinal plane with respect to the optical axis. In practice, it isusually quite close to �=2. The parameters relating the two retinal coordinate systems do notdepend on the pose of the camera and are called the camera intrinsic parameters.This camera model is essentially linear and ignores nonlinear e�ects such as those caused bylens distorsions. We assume either that they are not signi�cant (which we found in most of ourexperiments) or that they have been corrected by standard techniques.Thus no nonlinear camera distortion is considered which allows us to use the powerful tools ofprojective geometry. Projective geometry is emerging as an attractive framework for computervision [39]. In this paper, we assume that the reader is familiar with some elementary projectivegeometry. Such material can be found in classical mathematic textbooks such as [43, 5, 17],3



but also in the computer vision litterature where it is presented in chapters of recent books[11, 23, 39], and articles [37, 22].Using equation (1) and the basic properties of changes of coordinate systems, we can expressthe relation between the image coordinates in the (o; u; v) coordinate system and the three-dimensional coordinates in the O;x; y; z) coordinate system by the following equation24 UVW 35 = A24 1 0 0 00 1 0 00 0 1 0 35D2664 XYZT 3775 = P2664 XYZT 3775 (2)where U; V , and W are retinal projective coordinates, X ;Y ;Z, and T are projective worldcoordinates, A a 3 � 3 matrix describing the change of retinal coordinate system, and D isa 4 � 4 matrix describing the change of world coordinate system. The 3 � 4 matrix P is theperspective projection matrix, which relates 3-D world projective coordinates and 2-D retinalprojective coordinates. Except for the points at in�nity in the retina for whichW = 0, the usualretinal coordinates u; v are related to the retinal projective coordinates byu = UW v = VWThe points at in�nity in the retinal plane can be considered as the images of the 3-D points inthe focal plane of the camera, i.e. the plane going through C and parallel to the retinal plane.Similarly, except for the points at in�nity in 3-D space for which T = 0, the usual spacecoordinates X;Y , and Z are related to the projective world coordinates byX = XT Y = YT Z = ZT. The matrix A can be expressed as the following function of the intrinsic parameters and thefocal length f A = 264 �fku fku cot � u00 � fkvsin � v00 0 1 375 (3)Note that it depends on the products fku; fkv which says that we cannot discriminate betweena change of focal length and a change of units on the pixel axes. For this reason, we introducethe parameters �u = �fku and �v = �fkv. If � = �=2, equation (3) takes the simpler form:A = 24 �u 0 u00 �v v00 0 1 35 (4)Matrix D depends on 6 extrinsic parameters, three de�ning the rotation, three de�ning thetranslation, and has the form: D = � R t0T3 1 � (5)There is an interesting and important relationship between the camera intrinsic parametersand the absolute conic which is central to the problematic of this paper and which we studynow. The absolute conic was used in [14] to compute the number of solutions to the problem ofestimating the motion of a camera from �ve point correspondences in two views and in [37] tostudy the problem of camera calibration. The absolute conic 
 lies in the plane at in�nity ofequation T = 0 and its equation is X 2 + Y2 + Z2 = 0 (6)4
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All points on that conic have complex coordinates. In fact, if we de�ne x = XZ anf y = YZ ,the equation can be rewritten x2 + y2 = �1 which shows that it represents a circle of radiusi = p�1. Even though this seems a little bit farfetched, this conic is closely related to theproblem of camera calibration and motion estimation because it has the fundamental propertyof being invariant under rigid displacements, a fact already know to Caylay. The proof of thiscan be found in [14, 11]. Let us examine the consequences of this invariance. Since the absoluteconic is invariant under rigid displacements, its image by the camera, which is also a conic withonly complex points, does not depend on the pose of the camera. Therefore, its equation inthe retinal coordinate system (o; u; v) does not depend on the extrinsic parameters and dependsonly on the intrinsic parameters. In fact, it is not di�cult to show, and this is done in [11, 31],that the matrix de�ning the equation of the image of the absolute conic in the retinal coordinatesystem (o; u; v) is: B = A�1TA�1 (7)One of the important ideas which has emerged from our previous work [14, 37, 12] and will alsobecome apparent in this paper, is that the absolute conic can be used as a calibration patternfor the camera. This calibration pattern has the nice properties of always being present and ofbeing free.2.2 The epipolar correspondence, the fundamental matrix and theessential matrixIn the previous section, we have discussed the geometry of one camera. We are now going tointroduce a second camera and study the new geometric properties of a set of two cameras. Themain new geometric property is known in computer vision as the epipolar constraint and canreadily be understood by looking at �gure 2.Let C (resp. C0) be the optical center of the �rst camera (resp. the second). The linehC;C0i projects to a point e (resp. e0) in the �rst retinal plane R (resp. in the second retinalplane R0). The points e, e0 are the epipoles. The lines through e in the �rst image and the linesthrough e0 in the second image are the epipolar lines. The epipolar constraint is well-known instereovision: for each point m in the �rst retina, its corresponding point m0 lies on its epipolarline l0m. If the relative camera geometry is known then, given a pixel m, its epipolar line lmcan be computed, and its correspondentm0 has only to be searched along lm rather than in thewhole image.Let us enrich this idea and consider the one parameter family of planes going through hC;C0ias shown in �gure 3. This family is a pencil of planes. Let � be any plane in the pencil, i.e.containing hC;C0i. Then � projects to an epipolar line l in the �rst image and to an epipolarline l0 in the second image. The correspondences �^ l and �^ l0 are homographies1 betweenthe two pencils of epipolar lines and the pencil of planes containing hC;C0i. It follows that thecorrespondance l^ l0 is a homography, called the epipolar transformation.Now, in order to obtain an operational version of these properties, we are going to introducean algebraic formulation, thanks to the key notion of fundamental matrix. It can be shown thatthe relationship between the retinal coordinates of a pointm and its corresponding epipolar linel0m is projective linear. The fundamental matrix describes this correspondence:l0m = FmThe epipolar constraint has then a very simple expression: since the pointm0 corresponding tom belongs to the line l0m by de�nition, it follows thatm0TFm = 0 (8)The epipoles e and e0 are special points which verify the following relations:Fe = FT e0 = 01It can be seen that by construction they preserve the cross-ratio.6
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They imply that the rank of F is less than equal to 2, and in general it is equal to 2. Since thematrix is de�ned up to a scale factor, it depends upon seven independent parameters.In the practical case where epipoles are at �nite distance, the epipolar transformation ischaracterized by the a�ne coordinates of the epipoles e = [e1; e2]T and e0 = [e01; e02]T and bythe coe�cients of the homography between the two pencils of epipolar lines, each line beingparameterized by its direction: � 7! � 0 = a� + bc� + d (9)where � = m2 � e2m1 � e1 � 0 = m02 � e02m01 � e01 (10)andm$m0, is a pair of corresponding points. It follows that the epipolar transformation, likethe fundamental matrix depends on seven independent parameters.Equation (8) is the analog in the uncalibrated case of the so-called Longuet-Higgins equation[30]. Indeed, in the case of calibrated cameras, the 2D projective coordinates of a point m givethe 3-D direction of the optical ray Cm (see �gure 2), which is of course not the case with retinal(uncalibrated) coordinates. If the motion between the two positions of the camera is given bythe rotation matrix R and the translation matrix t, and if m and m0 are corresponding points,then the coplanarity constraint relating Cm0, t, and Cm is written as:m0 � (t�Rm) �m0TEm = 0 (11)The matrix E, which is the product of an orthogonal matrix and an antisymmetric matrix iscalled an essential matrix. Because of the depth/speed ambiguity, E depends on �ve parametersonly, i.e. the translation vector is de�ned up to a scale factor.It can be seen that the two equations (11) and (8) are equivalent, and that we have therelation: F = A�1TEA�1Unlike the essential matrix, which is characterized by the two constraints found by Huang andFaugeras [20] which are the nullity of the determinant and the equality of the two non-zerosingular values, the only property of the fundamental matrix is that it is of rank two. As it isalso de�ned only up to a scale factor, the number of independent coe�cients of F is seven, asseen previously.2.3 The rigidity constraint, Kruppa equations and the intrinsic pa-rametersAlgebraic formulations of the rigidity constraints using the essential matrixIn the case of two di�erent cameras, the transformation between the two retinal coordinatesystems is a general linear projective transformation of P3, depending on 15 parameters. Thistransformation can be decomposed in two (possibly similar) changes of retinal coordinates, andone rigid displacement. The constraints on the intrinsic parameters are obtained by expressingthe rigidity of this underlying displacement, the fact that for any fundamental matrix F, onecan �nd intrinsic parameters matrices A and A0, such that A0TFA is an essential matrix. Wehave seen that only the seven parameters of the fundamental matrix are available to describethe geometric relationship between two views. The �ve parameters of the essential matrixare needed to describe the rigid underlying displacement between the associated normalizedcoordinate systems, thus we can see that at most two independant constraints are available forthe determination of intrinsic parameters from the fundamental matrix.A �rst set of approaches to express the rigidity constraint involve the essential matrix:E = A0TFA (12)8



The rigidity of the motion yielding the fundamental matrix F with intrinsic parameters A andA0 is equivalent to the Huang and Faugeras conditions expressing the fact thatE, de�ned by (12)is an essential matrix :det(E) = 0 f(E) = 12 trace2(EET )� trace(EET )2 = 0 (13)As we have det(F) = 0, the �rst condition is automatically satis�ed, and does not yield anyvaluable constraint in our framework, thus we are left with only one polynomial constraint, thesecond condition.A second expression of the rigidity constraints has been presented by Trivedi [48]. If E is anessential matrix, the symmetric matrix S = EET , which a priori has six independent entries,depends only on the three components of t:EET = �[t]�2 = 24 t22 + t23 �t1t2 �t1t3�t2t1 t23 + t21 �t2t3�t3t1 �t3t2 t21 + t22 35 (14)The matrix S = EET has thus a special structure in which the three diagonal and the threeo�-diagonal entries are related by the three relations designated by (Tij), 1 � i < j � 3:4Sij � (trace(S)� 2Sii)(trace(S)� 2Sjj) = 0 (Tij)Trivedi has shown that in the case he considered, where the only intrinsic parameters were thecoordinates of the principal point, his three polynomial constraints reduce in fact to a tautologyand two independent polynomial constraints, provided that det(E) = 0. An examination of hisproof shows that this fact is true in the case of a general intrinsic parameters model too. Thuswe are left with two polynomial constraints, in addition to the nullity of the determinant.We show in appendix A.1 that in spite of the apparent discrepancy in the number of equa-tions, these approaches to express the rigidity are equivalent. However, the two independentTrivedi equations which are equivalent to the second Huang and Faugeras condition are not sim-pler than this one, contradicting what would be expected. They all yield algebraic constraintswhich are polynomials of degree 8 in the coe�cients of A and A0 (the intrinsic parameters)and thus are not suitable for practical computation, or even theoretical study. It is why we aregoing to consider a geometrical interpretation of the rigidity constraint which yields low-orderpolynomial constraints.The Kruppa equations: a geometric interpretation of the rigidity constraintThe Kruppa equations [24] are obtained from a geometric interpretation of the rigidity con-straints. They were �rst introduced in the �eld of computer vision by Faugeras and Maybankfor the study of motion [14], and then to develop a theory of self-calibration [37]. In this expo-sition, we will return to the original formulation, which doesn't assume that the two camerasare identical.Let consider an epipolar plane �, which is tangent to 
. Then the epipolar line l is tangentto !, projection of 
 into the �rst image, and the epipolar line l0 is tangent to the projection !0of 
 into the second image. It follows that the two tangents to ! from the epipole e correspondunder the epipolar transformation to the two tangents to !0 from the epipole e0 , as illustratedby �gure 4.If B is the matrix of !, image of the absolute conic in the �rst camera, then the matrix ofthe dual conic of ! is the dual matrix (matrix of cofactors) of B:K = B� (15)whose entries are given using the notations of Kruppa, and called Kruppa coe�cients:K = 0@��23 �3 �2�3 ��13 �1�2 �1 ��121A (16)9
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Thus by de�nition, we have the relations:�1 = b12b13 � b11b23�2 = b23b21 � b22b31�3 = b31b32 � b33b12 (17)and �12 = b212 � b11b22�23 = b223 � b22b33�31 = b231 � b33b11 (18)In the second image, we have the same relations, which de�ne a matrix K0 = B0�, by its entries�0i, �0ij .The epipolar line l = he;yi is tangent to ! i�:(e� y)>K(e� y) = 0by parameterizing the epipolar line l with the projective parameter � such that y = (1; �; 0)T ,this equation can be written2: P1(�) = k11 + 2k12� + k22�2 = 0 (19)where the coe�cients k11, k12, k22 are de�ned byk11 = ��13 � �12e22 � 2�1e2k12 = �12e1e2 � �3 + �2e2 + �1e1k22 = ��23 � �12e21 � 2�2e1 (20)Similarly, the epipolar line l0 through e0 corresponding to l is tangent to !0:k011 + 2k012� 0 + k022� 02 = 0 (21)Since l0 correspond to l, its projective parameter � 0 is obtained from the projective parameter� by (9), and thus (21) can be written, after substitution:P2(�) = k0011 + 2k0012� + k0022�2 = 0 (22)with: k0011 = k022b2 + k011d2 + 2k012bd;k0012 = 2k012ad+ 2k022ab + 2k011cd+ 2k012bck0022 = 2k012ac + k022a2 + k011c2the coe�cients k011, k012, k022 being obtained from (20) by replacing the coordinates ei of e withthe coordinates e0i of e0 and the coe�cients �i, �ij with the coe�cients �0i, �0ij.The polynomials P1 and P2 must have the same roots, which yield three so-called Kruppaequations, of which only two are independant:k22k0012 � k0022k12 = 0k11k0012 � k0011k12 = 0 (23)k11k0022 � k0011k22 = 02This assumes that the epipole e is not at in�nity. In that case we write e = [e1; e2; 1]T .11



It can be shown that the Kruppa equations are equivalent to the Huang and Faugeras con-straint expressed using the fundamental matrix and the intrinsic parameters. As seen previously,the null determinant constraint is readily satis�ed, thus we have only to show that the set ofKruppa equations (23) is equivalent to the second constraint, which is done in [31, 34].The nice thing with the Kruppa equations is that they are only of degree two in the twelveparameters �i, �ij, �0i, �0ij, thus providing a much simpler expression of the rigidity constraintthan the one obtained by the purely algebraic methods described at the beginning of this section.3 Using the Kruppa equations to compute the intrinsicparameters3.1 Using three images taken by a moving cameraA moving camera In an earlier work, Trivedi [48] has considered the problem of computingonly the coordinates of the principal point of each camera, that is to solve the self-calibrationproblem for the restricted model of intrinsic parameters:A = 24 1 0 u00 1 v00 0 1 35 A0 = 24 1 0 u000 1 v000 0 1 35using the three equations (Tij) mentionned previously. The initial idea was that if there werethree such independent equations, then it would have been possible to �nd a solution as soonas the number of cameras is superior or equal to three. But Trivedi pointed out that the threeequations reduce to two independent equations, and a tautology, and thus that there are notenough constraints for the problem to be solved.Recently, Hartley [18] has brought a partial solution using a simpli�ed camera model, wherethe only unknown is the focal distance, thus taking as a model for the intrinsic parameters:A = 24 1 0 00 1 00 0 k 35A0 = 24 1 0 00 1 00 0 k0 35He exhibits an algorithm to factor the fundamental matrix F as A0�1TEA�1, which under hisassumption depends also on seven parameters, the two di�erent focal lengths and the �ve motionparameters.If we do not make an additional assumption, it is not possible to use a more general modelfor the intrinsic parameters, since by adding views, we add a number of unknowns that is a leastequal to the number of additionnal equations. The idea behind our method is to use constraintswhich arise from the observation of a static scene by a single3 moving camera. In this casethe intrinsic parameters remain constant: A = A0, �i = �0i, �ij = �0ij , thus we can cumulateconstraints over di�erent displacements, and obtain a su�cient number of equations for theresolution.How many displacements are necessary ? Each displacement yields two independentalgebraic equations. In the case of a moving camera, we have only �ve coe�cients �i, �ij , toestimate, since they are de�ned up to a scale factor. In the general case, three displacements arenecessary. In the case of the simpli�ed model with four intrinsic parameters, two displacementsare su�cient, since we have the additional constraint (33).3Since a camera is characterized by its intrinsic parameters, this means that we assume that intrinsic parametersremain constant during the displacements. In the opposite case, the problem we would have to deal with would bethe same than with multiple di�erent cameras. 12



But if we perform two displacements, we will obtain three images, 1,2,3. Between threeimages, there are in fact three displacements, 1-2, 2-3, et 1-3. One could worry about the factthat since the third displacement in this case D3 = D2D1 is a composition of the two �rstdisplacements D1 and D2, the 1-3 equations would be dependent on the 1-2 and 2-3 equations,thus resulting in an underconstrained system. One way to see that it is not the case is to notethat in our case where we consider displacements only up to a scale factor, the translationalpart of displacementD3 cannot be obtained from displacementsD1 and displacementD2, sincethe norm of the translations is unknown, as pointed out in section 5.1. Let us rephrase theargument in another way. Two fundamental matrices depend upon 14 parameters. But if weare to achieve self-calibration, then we have eventually to describe the three displacements 1-2,2-3, and 1-3 up to a scale factor (11 parameters, as shown in section 5.1) and the 5 intrinsicparameters. This is a function of 16 parameters, thus the information is not entirely containedin the �rst two fundamental matrices. These two missing parameters are actually recoveredthanks to the two additionnal Kruppa equations provided by the third fundamental matrix.We also give in appendix B a simple numerical exemple to show that in the general case theequations are independent.Degenerate cases Not all combinations of displacements will work. For instance, if two ofthe displacements are identical, obviously they will yield only two independent constraint.Also, in the case of a displacement for which the translation vector is null t = (0; 0; 0)T ,that is if the displacement is a pure rotation whose axis goes contains the optical center of thecamera, as the two optical centers are identical, there is no epipolar constraint, and thus therigidity constraint cannot be expressed by means of the Kruppa equations. However, it is known[47, 49] that a simple method works well in this case.In the more frequent case where the displacement is a pure translation t = (t1; t2; t3)T , therotation is the identity R = I3. The fundamental matrix being antisymetric, it is easy to seethat the epipoles e and e0 are the same, and the homography is the identity � 7! � , resulting inKruppa equations which reduce to tautologies. The coe�cients k0ij from (23) and the coe�cientskij from (20) are identical, since the epipoles are the same, the coe�cients k00ij and k0ij from (23)are identical, since the homography is the identity. Thus the two polynomials P1 and P2 areequal. A geometric interpretation is that since the two tangents to ! in the �rst image are thesame as the tangents to ! in the second image, and the epipolar transformation is the identity,no constraint can be derived from the rigidity.Intrinsic parameters and Kruppa coe�cients We now show that in the case of aunique moving camera there is a one-to-one correspondence between the Kruppa coe�cientspreviously introduced, and the real intrinsic parameters.Using the relations (15) and (7), we obtain the relation: K = AAT , de�ned up to a scalefactor �. Using the de�nition (16) of K, yields:��1 = v0 (24)��2 = u0 (25)��3 = u0v0 � �u�v cot �sin � (26)��12 = �1 (27)��23 = �u20 � �2usin2 � (28)��13 = �v20 � �2vsin2 � (29)By combining (25), (28), and (27): �2u = �23�12 � �22�212 sin2 �13



and similarly, with (24), (29), et (27):�2v = �13�12 � �21�212 sin2 �By substitution of these two relations in (26), we obtain:cos2 � = (�3�12 + �1�2)2(�13�12 � �21)(�23�12 � �22)Thus we can conclude that the system of equations (24-29) has a real solution if and only if thefollowing three conditions are satis�ed:8<: �13�12 � �21 > 0�23�12 � �22 > 0(�13�12 � �21)(�23�12 � �22) � (�3�12 + �1�2)2 (30)Among these conditions, only two are independent, speci�cally if the third condition is satis�ed,then the �rst two are equivalent. I has be shown in [31, 34] that these conditions are equivalentto the fact that the conic ! whose matrix is K� has no real point.Some algebra then yields the intrinsic parameters:u0 = � �2�12v0 = � �1�12�u = "s�23�21 + �13�22 + �12�23 + 2�1�2�3 � �12�23�13�12(�21 � �13�12) (31)�v = "s�23�21 + �13�22 + �12�23 + 2�1�2�3 � �12�23�13�12(�22 � �23�12)cos � = �3�12 + �2�1p(�23�12 � �22)(�13�12 � �21)" = �1 (32)These expression show that they are uniquely determined, except for the sign of the scale factors�u et �v. From these relations, two remarks can be made. The �rst one is that the intrinsicparameters depend only on the ratio of the Kruppa coe�cients, which was expected. The secondone is that it is quite simple to formulate the four-parameter model. Since in that case � = �2 ,the third constraint (30) becomes simply:�3�12 + �2�1 = 0 (33)3.2 A semi-analytic methodPrinciple Three displacements yield six equations in the entries of the matrix K de�nedin (16). The equations are homogeneous, so the solution is determined only up to a scale factor.In e�ect there are �ve unknowns. Trying to solve the over-determined problem with numericalmethods usually fails, so �ve equations are picked from the six and solved �rst. As the equationsare each of degree two, the number of solutions in the general case is 32 = 25. The remainingequation could just be used to discard the spurious solutions, but we have prefered to exploitthe redundancy of information to obtain a more robust algorithm, as well as a gross estimate ofthe variance of the solutions. 14



Solving the polynomial system by continuation A problem is that solving a poly-nomial system by providing an initial guess and using an iterative numerical method will notgenerally �nd all the solutions: many of the starting points will yield trajectories that do notconverge and many other trajectories will converge to the same solution. However it is notacceptable to miss solutions, since there is only one correct one amongst the 32. Recently de-veloped methods in numerical continuation can reliably compute all solutions to polynomialsystems. These methods have been improved over a decade to provide reliable solutions tokinematics problems. The details of these improvements are omitted. The interested readeris referred for instance to [56] for a detailed tutorial presentation. The solution of a systemof nonlinear equations by numerical continuation is suggested by the idea that small changesin the parameters of the system usually produce small changes in the solutions. Suppose thesolutions to problem A (the start system) are known and solutions to problem B (the targetsystem) are required. Solutions to the problem are tracked as the parameters of the system areslowly changed from those of A to those of B. Although for a general nonlinear system numerousdi�culties can arise, such as divergence or bifurcation of a solution path, for a polynomial sys-tem all such di�culties can be avoided. Using an implementation provided by Jean Ponce andcolleagues fairly precise solutions can be obtained. The major drawback of this method is thatit is expensive in terms of CPU time. The method is a naturally parallel algorithm, becauseeach continuation path can be tracked on a separate processor. Running it on a network of 7Sun-4 workstations takes approximatively half a minute to solve one system of equations.Continuation-based computation of the intrinsic parameters with threedisplacements� generate six independent Kruppa equations from the three fundamental matrices.� for each of the six system of �ve equations Ei:� solve Ei by the continuation method to obtain the Kruppa coe�cients,� keep only the real solutions Kki which satisfy the constraints (30),� for each pair of solution lists fKki gk, fKkj gk, increment a counter corresponding to the solutionin the list i and the one in the list j which minimize the distance4:d(u;v) = 5Xi=1 kui � vikmax(kuik; kvik)where u and v are two 5-dimensional vectors representing individual solutions, and ui andvi are their components,� pick up in each list Ki the solution which has obtained the highest counter score,� compute the intrinsic parameters using the formulas (31),� compute the �nal solution and an estimate of the covariance by an averaging operator5.Two examples We have also veri�ed the impact of the orthogonality constraint (33) in twodi�erent cases. In the �rst one, where we have only two sets of correspondences, we just solvethe system of equations which are the four Kruppa equations and the constraint (33), which is4This relative distance had to be chosen, because the orders of magnitude of each component are very di�erent.5In our implementation, we chose to compute the mean value, and to discard iteratively the solutions whosedistance to the mean values are above a certain threshold. The �nal solution is obtained as the mean value of theretained solutions, and an estimate of covariance is obtained by computing their standard deviation.15



also quadratic. In the second one, where we have three sets of correspondences, we could use avery strong redundancy of equations since there are now C46 = 15 systems which could be builtby picking four Kruppa equations plus the constraint (33). However, for the sake of comparison,we have used only six of these equations.We present in table 1 and table 2 two typical examples6 of results obtained by each method,using synthetic data which are point correspondences at di�erent noise levels. We have tested:� 2 displacements with the orthogonality constraint (the results are displayed with the threepossible combinations of displacements, the dash indicate that no solution compatible withthe constraints (30) was found),� 3 displacements with the orthogonality constraint,� 3 displacements without the orthogonality constraint.The experimental procedure consisted in choosing three displacements, generating point corre-spondences by projecting in the two retinas a set of random 3D points and adding Gaussianimage noise, computing the fundamental matrix with a non-linear method [32] from these pointcorrespondences, and then use the continuation algorithm to solve the Kruppa equations ob-tained from the fundamental matrices. Numbers in brackets are estimates of the uncertainty ofthe results.noise method Estimated parameters(pixels) orth. displ. �u �v u0 v0 � � �20 640.125 943.695 246.096 255.648 00.1 Y 1,2 642.32 947.37 245.82 253.94 10�13Y 2,3 639.44 944.36 246.04 258.59 10�13Y 1,3 641.62 945.73 248.97 255.56 10�12Y 1,2,3 641.69 [2.0] 947.49 [3.7] 247.03 [1.2] 256.55 [1.7] 10�13 [10�12]N 1,2,3 644.40 [2.3] 952.29 [3.8] 237.45 [4.2] 254.61 [1.9] 6:10�3 [10�3]0.5 Y 1,2 651.39 962.47 244.73 246.56 10�12Y 2,3 636.54 946.72 245.82 270.46 10�12Y 1,3 647.41 953.67 260.91 255.11 10�13Y 1,2,3 648.39 [11.1] 963.69 [20.3] 250.84 [6.7] 260.26 [9.1] 10�13 [10�12]N 1,2,3 664.19 [11.2] 996.03 [20.6] 190.91 [23.8] 248.71 [9.1] 4:10�2 [2:10�2]1.0 Y 1,2 - - - - -Y 2,3 632.49 948.90 245.50 285.45 10�13Y 1,3 74.85 455.95 733.93 434.07 10�10Y 1,2,3 658.00 [24.8] 986.63 [45.7] 255.61 [14.3] 265.09 [19.7] 1013 [10�12]N 1,2,3 681.66 [25.7] 1109.05 [75.6] 31.10 [139.9] 231.99 [20.5] 0.13 [0.08]1.5 Y 1,2 676.05 1002.37 241.89 223.28 10�12Y 2,3 627.92 950.11 245.16 300.56 10�12Y 1,3 659.79 971.19 293.82 252.73 10�13Y 1,2,3 669.62 [42.6] 1013.85 [79.2] 260.16 [23.3] 270.23 [32.3] 10�12 [10�12]N 1,2,3 633.02 [73.0] 1223.62 [104.5] 190.46 [231.1] 205.49 [43.9] 0.27 [0.2]Table 1: Results obtained with the continuation method, con�guration 1.The big advantage of the method is that no initialization is needed. If the points are measuredwith a good precision, the results can be su�ciently precise. Another advantage is that it iseasy to assess the success or failure of the algorithm. However there are several drawbacks:� the method is suitable only for the case of the minimum number of displacement, asit is di�cult to use all the constraints provided by a long sequence without increasingconsiderably the amount of computations,6It can be seen that results can di�er signi�cantly from one con�guration to another. For a statistical approachand a more global assessment of the precision, see next section.16



noise method estimated parameters(pixels) orth. displ. �u �v u0 v0 �� �20 640.125 943.695 246.096 255.648 00.1 Y 1,2 647.56 955.50 245.32 250.58 10�13Y 2,3 124.317 947.934 230.705 252.053 10�13Y 1,3 639.303 943.591 246.083 257.594 10�12Y 1,2,3 640.83 [2.7] 947.59 [2.7] 237.90 [10.2] 252.88 [3.1] 10�13 [10�12]N 1,2,3 636.32 [15.8] 942.45 [5.0] 241.87 [5.9] 251.61 [2.8] 0.018 [0.02]0.5 Y 1,2 - - - - -Y 2,3 - - - - -Y 1,3 635.76 942.88 246.03 265.70 10�12Y 1,2,3 654.01 [24.1] 976.83 [22.4] 214.28 [47.0] 232.66 [20.7] 10�13 [10�12]N 1,2,3 623.63 [78.8] 934.15 [31.4] 240.84 [2.1] 237.95 [14.7] 0.089 [0.09]1.0 Y 1,2 744.34 1110.38 235.28 187.89 10�13Y 2,3 - - - - -Y 1,3 630.86 941.71 245.96 277.04 10�13Y 1,2,3 505.94 [248.7] 779.03 [389.9] 179.30 [94.4] 407.68 [317.3] 1013 [10�12]N 1,2,3 628.20 [130.4] 936.94 [68.6] 208.05 217.74 [27.9] 0.15 [0.1]1.5 Y 1,2 2462.05 3943.05 27.53 -558.13 10�14Y 2,3 342.86 875.35 219.38 246.91 10�14Y 1,3 604.46 885.15 249.27 260.23 10�12Y 1,2,3 688.43 [163.9] 1048.77 [254.3] 161.48 [75.0] 207.08 [38.7] 10�12 [10�12]N 1,2,3 1190.91 [1164.0] 1803.80 [1867.3] 109.39 [149.1] -109.65 [661.5] 0.13 [0.1]Table 2: Results obtained with the continuation method, con�guration 2.� it is di�cult to take into account uncertainty for the input (fundamental matrices) as wellas for the output (camera parameters),� the computational cost of solving the polynomial system is relatively high,� it is not possible to express the constraints (30) at the resolution level, since continuationswork in the complex plane. Thus with noisy data, it can happen that no acceptablesolution can be found.� it is not very easy to use some a priori knowledge that one might have about the intrinsicparameters.All these drawbacks come from the use of the continuation method and can be overcome usingan iterative formulation.3.3 Iterative formulationsIn this approach, we do no longer make use of the simple polynomial structure of the Kruppaequations, but rather consider them as measurement equations relating directely fundamentalmatrices to intrinsic parameters, obtained by substituting the values (24-29) into (23). We canthen solve them either by a batch non-linear least-squares minimization technique, or by anextended Kalman �ltering approach.Global minimization The choice of the criterion to be minimized is very important. Wehave noticed two things. First, using the three Kruppa equations even though they are not in-dependent provides additional constraints and improve the results. Second, minimizing directlythe value of the residual of expressions (23) do not work well. The reason is the well knownfact that minimizing a criterionP (aibi � a0ib0i )2 is quite di�erent from minimizingP (aib0i � a0ibi)2because the later is weighted by the variable quantity bib0i. In our case, since we are interested17



in expressing the proportionality of the polynomials P1 and P2 from (19) and (22) we thus tryto minimize the following criterion:min�u;�v ;u0;v0;�Xi (k11k0011 � k12k0012 )2 + (k12k0022 � k12k0022 )2 + (k11k0022 � k11k0022 )2 (34)where the coe�cients kij and k00ij are de�ned in (20) and (23).We have compared this method with the continuation method, using a statistical approachinvolving 100 triples7 of displacements. To obtain an idea of the precision and convergenceproperties, we have started the minimization with di�erent initial values: (1) the exact values,(2) the values given by the continuation method, (3) the arbitrary values �u = 800, �v = 800,u0 = 255, v0 = 255, � = �2 , corresponding to the relatively standard situation of an orthogonalgrid, no principal point shift, and reasonable values for the scale factors (with no knowledge ofaspect ratio). The table 3 shows the mean relative error for each parameter, obtained at twodi�erent noise levels: 0.2 is approximately the subpixel precision of the model-based featuredetectors, whereas 1.0 pixel is the typical precision of some operator-based feature detectors.noise method failure parameters(pixels) �u �v u0 v0 � � �20.2 Continu 2 0.056 0.062 0.133 0.136 0.035Mini (1) 0.025 0.028 0.071 0.095 0.034Mini (2) 0.054 0.056 0.106 0.123 0.051Mini (3) 0.065 0.063 0.136 0.153 0.0551.0 Continu 7 0.120 0.141 0.263 0.321 0.080Mini (1) 0.115 0.141 0.261 0.327 0.098Mini (2) 0.138 0.160 0.274 0.370 0.130Mini (3) 0.174 0.184 0.281 0.360 0.135Table 3: Statistical results with 3 displacements (see text).We can conclude from these results that:� the precision on the scale factors �u and �v is better than the one on the principal pointcoordinates u0 and v0,� the results are quite sensitive to the choice of the initialization point,� the precision of the iterative method is roughly comparable with the precision of thecontinuation method,Since the number of equations and parameters is relatively small, the method is computationallye�cient. Its main disadvantage is the need for a good starting point, but it could be obtainedby the continuation method.Recursive �ltering If we have a long sequence, it may be interesting to use the IteratedExtended Kalman Filter8, with the following data:vector of state parameters a = (�u; �v ; u0; v0)Tvector of measurements x = (F11; F12; F13; F21; F22; F23; F31; F32; F33)Tmeasurement equations f(x;a) = 0, f1 and f2 are two Kruppa equations (23)7The results improve if one considers more displacements. See next paragraph.8As it is a classical tool in computer vision, we do not give details on the �lter itself, and rather invite the interestedreader to read the classical references [21] [38], or the more practical presentations which can be found in [1], [11],and [59]. 18



The perpendicularity correction factor has been dropped to reduce non-linearities in the model,and we have only used two Kruppa equations to ensure that the measurement equations areindependent. Figure 5 shows an example obtained with 0.5 pixel of image noise. The convergencehappens between 5 and 10 displacements.
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Figure 5: An example of computation of intrinsic parameters by Kalman �ltering.Statistical results have been conducted to see the e�ect of the increase of the number ofdisplacements and to compare the Kalman method to the batch minimization approach9. Intable 4 the Kalman �ltering has been initialized with the parameters estimated from the mini-mization technique using the �rst three displacements. The fact that the average error remainsapproximatively the same for the parameters �u and �v is due to convergence to false localminima induced by inexact starting points, and the fact that in the Kalman �lter approach,the full information provided by all the displacements is not available, due to the recursive na-ture of the approach. Thus, statistically, the global minimization gives better results, a �ndingconsistent with those of [57] and [26]. However, if the starting point is precise, as in table 5,where it is found by the minimization method using a larger number of displacements, it can beseen that the results are slightly better, which may be due to the fact that uncertainty is takeninto account. In this table, we have mentioned not only the average relative error, but also thepercentage of cases for which the �nal error was superior to 5%, which shows that if the Kalman�lter does not fall into a false minimum, it improves the results signi�cantly.3.4 An evaluation of the methodFrom the numerous simulations that we performed (some of which were described in this section),it appears that all the methods give results which are comparable, in the sense that none of themgives clearly superior results. In the case of minimal number of displacements, the continuationmethod seems however preferable, whereas the iterative approaches are well suited to the casewhere more displacements are available.9The apparingly less good results come from the fact that there was no requirements on these experiments on theminimum number of point matches generated, and thus often very few points have been used, in contrast with theprevious experiments, where we started with at least 30 points19



noise nb �u �v u0 v0(pixel) displ mini kalman mini kalman mini kalman mini kalman0.2 3 0.1494 0.1389 0.1487 0.1398 0.3047 0.2778 0.3091 0.28405 0.0952 0.1377 0.0837 0.1462 0.2264 0.2676 0.2591 0.271310 0.0652 0.1390 0.0714 0.1333 0.1970 0.2343 0.2401 0.240715 0.0464 0.1392 0.0753 0.1201 0.2033 0.2243 0.2042 0.21671.0 3 0.3886 0.3535 0.3944 0.3647 0.5237 0.5070 0.5783 0.55405 0.3335 0.3383 0.3124 0.3664 0.4742 0.4936 0.499 0.522110 0.2875 0.3534 0.2913 0.3707 0.4406 0.4644 0.5144 0.488815 0.3017 0.3662 0.2710 0.3712 0.4336 0.4348 0.4954 0.4774Table 4: Comparison of minimization and Kalman �ltering (1).noise �u �v u0 v0(pixel) mini kalman mini kalman mini kalman mini kalman0.2 err 0.0412 0.0408 0.0737 0.0659 0.1832 0.1448 0.1916 0.1396% err > 0.05 22 13 28 15 48 29 58 401.0 err 0.2337 0.2498 0.2245 0.2796 0.4165 0.3500 0.4854 0.4171% err > 0.05 68 49 64 58 78 59 78 72Table 5: Comparison of minimization and Kalman �ltering (2).In any case, the main limitation of the method comes from the necessity to get preciselocalization of the points in order to compute precise fundamental matrices. A subpixel accuracyof about 0.2 to 0.5 pixel is necessary in order to get acceptable results. It means that the mostprecise feature detectors need to be used. Some types of displacements will not work well,speci�cally those leading to nearly degenerate cases for Kruppa equations, mentioned in thissection, and those leading to unstable computation of the fundamental matrix, which are studiedin [31, 33].Another limitation might be that the method does not give an accurate estimation for theposition of the principal point, and the angle of retinal axes. The later is of no importance, sincein practice it is very well controlled and very close to �2 . Thus this information can be used,either to restrict the model, or to discard false solutions. We will see in the next section that theformer is also of little importance, in the sense that it does not a�ect a lot the subsequent stageof the calibration, the estimation of 3D motion. In fact, we will see that even with imprecisevalues of the camera parameters, fairly acceptable motion parameters can be recovered, andthat furthermore, during this process of recovering the motion parameters, the estimation ofintrinsic parameters can be re�ned.4 Taking into account the motion of the cameraWe suppose now that we have obtained the intrinsic parametersA of a camera. Our next goalis to compute the three-dimensionnal motion from pairs of images. This computation can bedone quite robustly even with imprecise camera parameters. We can take advantage of thisremark to combine this computation with the computation of intrinsic parameters. We obtainanother iterative approach to self-calibration, which yields more robust results than the Kruppaapproach. 20



4.1 Computing the motion after calibratingThe motion determination problem from point correspondences is very classical. See [16] [45][57] [19] for solutions similar to ours. We present two di�erent solutions, both based on thecomputation of the fundamental matrix.A direct factorization We have seen that during the course of intrinsic parameters es-timation, we had to compute the fundamental matrix F, from which the essential matrix isimmediately obtained: E = ATFA (35)The problem of �nding the rotation R and the translation t from E is classical [30, 51, 16].As we have, by construction, found a F-matrix of rank two, the direction of translation isjust obtained by solving: ET t = 0.To �nd the rotation, we use a method introduced by [16]: in the presence of noise, weminimize with respect to the rotation matrix R the criterion:C = 3Xi=1 kEi �RTTik2where Ei and Ti are the three rows of the matrices E and T, respectively. Using q a quaternionrepresenting R, some properties of this representation yield:C = 3Xi=1 j q� Ei �Ti � q j2 (36)where� denotes the quaternion product. It follows from the de�nition of the quaternion productthat q�Ei�Ti�q is a linear function of the 4 coordinates of q. Therefore, there exists a 4�4matrix Ni such that:j q�Ei �Ti � q j= Niq with Ni = � 0 (Ei �Ti)TTi �Ei [Ei]� + [Ti]� � (37)Therefore, the problem reduces to a linear least-squares problem:minq 3Xi=0 qNiNTi qT subject to the constraint: kqk2 = 1which is a classical minimization problem, whose solution is the eigenvector associated with thesmallest eigenvalue ofN =P3i=1NiNTi . It can be noted that this solution is entirely equivalentto the well-known method of Tsai and Huang [51] , which has been recently proved to be optimalby Hartley [18] . We denote this algorithm by FACTOR.An iterative solution An alternative method is to use directly the criterion that has beenused to determine the fundamental matrix. In [32] di�erent parametrizations for this matrixhave been proposed to take into account constraints on its structure and linear and non-linearcriteria for its estimation were also considered. We then clearly show that the linear criterion:minF Xi (m0Ti Fmi)2 subject to Tr(FTF) = 1 (38)is unable to express the rank and normalization constraints. Using the linear criterion leadsde�nitely to the worst result in the determination of the fundamental matrix. To overcome themajor weaknesses of the linear criterion, di�erent non-linear criteria were proposed and analyzedin great detail. We have found that the following criterion works well:minFfd(m0T ;Fm)2 + d(mT ;FTm0)2g (39)21



where d is a the Euclidean distance in the image plane between a point and a line.We denote byMIN-LIN10 the minimization of the error criterion (38) and byMIN-DISTthe minimization of the error criterion (39). The knowledge of the intrinsic parameters allows usto minimize these criteria with respect to �ve motion parameters: we parameterize T by t1=t3,t2=t3 and R by the three-dimensional vector r whose direction is that of the axis of rotationand whose norm is equal to the rotation angle. We use, as a starting point for this non-linearminimization, the result obtained by FACTOR.4.2 An experimental comparisonThe case of exact intrinsic parameters In the �rst comparative study, we supposethat the exact intrinsic parameters are known. The graphs have been obtained using 200 dif-ferent displacements, and show the average relative error on the rotational and translationalcomponents. As the non-linear methods require a starting point whose choice is important, wehave considered the three possibilities:1. the exact motion, to test the precision of the minimum (�gures 6 and 7).2. the motion obtained by FACTOR, which is the realistic initialization (�gures 8 and 9,label 2).3. an arbitrary motion: r = ( 12 ; 12 ; 12 )T , t = (0; 0; 1)T , to test the convergence properties(�gures 8 and 9, label 2).The conclusions of the simulations are:� The computation is more stable than the fundamental matrix computation. Motion com-putation is a less di�cult problem.� The rotational part is determined more precisely than the translational part.� The iterative method based onMIN-DIST is the most precise, but it is the most sensitiveto the choice of the starting point.� The results obtained byMIN-DIST and by FACTOR in the realistic case are very close.Note that even using MIN-LIN, the results are much more precise than those usually foundby using a purely linear methods such as the eight-point algorithm [51, 10].Sensitivity to errors on the intrinsic parameters Very few results are availableconcerning the sensitivity of motion and structure computations to errors on the intrinsic pa-rameters [25]. It is nevertheless an important issue, as it determines the precision of calibrationthat it is necessary to achieve to obtain a given precision on the three dimensionnal reconstruc-tion, which is the �nal objective. We present here some experimental results which give anidea of the numerical values. Figure 10 represents the e�ects of the error on the location of theprincipal point. The exact principal point is at the center (255,255) of the image, and we haveused for the computation of the motion principal points that were shifted from 20 to 200 pixelsfollowing a Gaussian law. Each point on the �gure represents 100 trials. Figure 11 representsthe e�ects of the error on the scale factor, which has been similarly made vary from 2.5% to25%. Among the numerous conclusions that can be drawn from the graphs, we would like toemphasize the following:� The e�ects of the imprecision on intrinsic parameters are signi�cant; however, until rel-atively large errors are reached (10% on the scale factors, several tens of pixels for theprincipal point), these e�ects are less signi�cant than those due to noise (for example, ifthe image noise increases from 0.6 to 1.0 pixels).10Although it is not a linear method, but a non-linear method based on the same error measure than the linearcriterion for the computation of the fundamental matrix.22
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Figure 6: Relative error on the rotation, initialization with the exact displacement.
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Figure 7: Relative error on the translation, initialization with the exact displacement.23
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Figure 8: Relative error on the rotation, initialization with two di�erent values (see text).
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� The sensitivity to errors on the principal point is less than the sensitivity to errors on thescale factor: in terms of relative errors, a 120 pixels shift of the principal point is 50%error and has the same e�ects as a 25% error on the scale factors.� The iterative criterionMIN-DIST is more sensitive to the error on the intrinsic parame-ters than the solution of FACTOR. This can be explained by the fact that the fundamentalmatrix, which is directly used by FACTOR partially retains the information on the exactintrinsic parameters, whereas the iterative method compensates entirely the error on theintrinsic parameters by an error on the computed motion.4.3 A global approach to compute simultaneously calibration and mo-tionUsing a single displacement A natural extension of the previous techniques is to min-imize the criterion (39) simultaneously with respect to the �ve motion parameters previouslyintroduced and to the intrinsic parameters, by substitution of A�1TTRA�1 in place of F.Although the number of equations appearing in the least-squares formulation is the number ofpoint matches, which may be very large, we must remember from the analysis made in section 2.3that only two parameters can be computed. Since we have seen that the most signi�cant are �uand �v , we chose to allow them to vary and to leave u0 and v0 �xed. The relative errors obtainedon the motion parameters are shown in �gure 12. They are to be compared to �gure 11, and tofacilitate this comparison, we have also plotted on this �gure the two curves obtained in �gure 11for the two extreme noise levels. This superposition makes it clear that the new method is muchless sensitive to initial errors on the scale factors, but more sensitive to noise. The �nal erroron the motion are compensated by errors on the camera parameters, as seen in �gure 13, whichshows that the �nal error on the camera parameters depends mainly on the noise, and not onthe initial error on the parameters until 25%, where some convergence problems appear. Theyare revealed by the fact that the �nal error increases whereas the noise level remains constant.If the algorithm achieved perfect convergence, the same solution could be found for a given noiselevel, and thus the �nal error would not depend at all from the starting value.Global minimization using multiple motions If we have several camera displace-ments, then the previous approach can be used to estimate all the camera parameters, and tofurther constrain the problem, if more than three displacements are available. Since the mini-mization is highly non-linear, and involves a large number of unknowns, to obtain convergencewe need a good starting point, which can fortunately be obtained from the previous method. Letus summarize the new algorithm, which can accomodateN independant displacements (N � 2),and, for each displacement i, a minimum of eight correspondences (qij;q0ij)j :
25
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This explains that we obtain more precise results.4.4 An evaluation of the resultsIn this section, we have studied the computation of the motion parameters in the context of self-calibration. One �nding is that althougth in a classical context where the camera parametersare known accurately, the non-linear minimization techniques provide the most accurate resultsfor the motion parameters, the best method in our context is the decomposition of essentialmatrix method. This method is very fast and not very sensitive to the errors on the cameraparameters.Once an estimate of the motion has been obtained this way, we can simultaneously re�ne thecamera and motion parameters. So far this method has proved to be the most reliable. Althoughits principle is very simple, it nevertheless depends on the availability of a starting point, andthe methods presented in the previous section are perfectely adequate for this purpose, sincesome of them do not even need an initialization.5 Computing the extrinsic parameters of a stereo rig andrecovering structure from multiple viewpointsIn the usual calibration method, we work in the world coordinate system, using a 3D model ofan object present in the environment. It is assumed that we know the 3D coordinates of someof reference points on the object in a coordinate system attached to the object. The extrinsicparameters de�ne the displacement from the object's coordinate system (taken to be the worldreference frame) to the camera coordinate system. In this part, we do not use any 3D model,so we do all the computations in the cameras coordinate system, and use as the world referenceframe the one attached to the �rst camera. Thus, in our case, the extrinsic parameters de�nethe displacement from the �rst to the second camera, computed in the �rst camera coordinatesystem. Since we do not have any metric information, we can compute this displacement onlyup to a scale factor.Two di�erent approaches are presented. The �rst one is straightforward in the case of abinocular stereo rig and more subtile in the case of a trinocular stereo rig, but it needs inter-camera point matching. The second enables us to obtain the inter-camera relative displacementsusing only monocular point matches. Two displacements of the stereo rig are, in general,su�cient to obtain a unique solution.5.1 A direct approach: binocular and trinocular stereo rigThe most straightforward approach is to apply the techniques previously presented using pointcorrespondences established between the di�erent cameras of the stereo rig. How to obtainthese correspondences automatically is not the subject of this paper. The advantage of thisapproach is that, since the relative displacement between the cameras is �xed, it is possibleto accumulate point matches between pairs of images taken at di�erent times. Using multipledisplacements, it is possible to obtain a number of point matches far larger than the one thatcould be obtained from a single pair of images, which allows to obtain very precise results. Thisidea has been developped in [58]. Let us now explain how the perspective projection matricesare obtained, from available data which are now the relative displacements from cameras i tocameras j, obtained only up to a scale factor, and expressed in the coordinate system of camerai.The binocular case The world coordinate system that is used all the way in this sectionis the coordinate system attached to the �rst camera, taken at the �rst position. It means, asmentionned in Section 2.1, that the perspective projection matrix attached to the �rst camera31



can be written: P1 = [A1 ; 0], where A1 is the 3 � 3 intrinsic parameters matrix of the �rstcamera. The extrinsic parameters of the stereo rig are the parameters of the displacement D12between the �rst camera and the second camera, expressed in the coordinate system of the �rstcamera. Thus the two projection matrices are:P1 = [A1 ; 0] P2 = P1D12 = [A2R12;A2T12] (41)where A2 is the intrinsic parameters matrix of the second camera, and R12 and T12 the rota-tional and translational components of the displacement D12. In practice, when working onlyfrom images, we only know the direction of the translation, and thus usually use the unit vectort12 instead of T12. If we replace T12 by t12 in (41), the last row of the projection matrix P2 ismultiplied by an unknown scale factor. The 3D reconstruction obtained is nevertheless coherent,up to a scale factor. A single metric information concerning the motion, or the 3D length of afeature measured in an image, would be su�cient to determine this scale factor.The trinocular case In the case of three cameras (designated by 1, 2 and 3), using againthe �rst camera coordinate system as a reference, the three projection matrices can be written:P1 = [A1 ; 0] P2 = P1D12 P3 = P2D23 (42)Where D12 is in the coordinate system of the �rst camera, and D23 in the coordinate system ofthe second camera. These are quantities which can be computed from images, with the importantdetail that while computing camera motion, we are not able to determine the translations T12and T23, but only the directions t12 and t23. While in the case of two views it is appropriateto use the formula (41) and to replace T12 by t12, since this results only in a global scene scalefactor, if we want to perform the reconstruction using three views11, we have to obtain threecoherent projection matrices, and it is not appropriate to use formula (42) and to replace T12and T23 by t12 and t23. This would yield an incorrect result, in which the epipolar constraintbetween the images 1 and 3 is not satis�ed, since the direction of translation between P1 and P3computed in this way would be generally incorect. The di�culty comes from the fact that if weknow two displacements only up to a scale factor, it is only possible to determine the rotation:R13 = R23R12 (43)but not the direction of the translation of D23D12, the only constraint being that it belongs tothe plane: ht23;R23t12i: t13 � (t23 �R23t12) = 0 (44)The ratio � = kt12kkt23k must be known, as well as the relative signs. Thus, from the knowledgeof R12, R23, t12, t13 there is no way to build three coherent projection matrices. In order todetermine the ratio, we have also be able to compute the displacement D13 in the �rst cameracoordinate system, to determine the direction of translation t13. Since we want to reconstructfrom the images 1, 2, and 3, there must be a portion of the scene visible in both image 1 andimage 3, and thus, it is a reasonnable requirement. By expressing the proportionality constraint:t13 � (R23u1 + �u2) = 0 (45)where u1 = t12kt12k and u2 = t23kt23k , we obtain:� = � (t13 �R23u1)1(t13 � u2)1 = � (t13 �R23u1)2(t13 � u2)2 = � (t13 �R23u1)3(t13 � u2)3 (46)Taking t12 = u1, t23 = �u2, we then obtain, using (42) three perspective projection matricesthat are all mutually coherent.11It is well known that trinocular stereo algorithms are more e�cient and yield more precise 3D reconstructions.32



It can be noted that this approach can be also used in the case of structure from motion(eg: one unique moving camera) in order to register in a same coordinate frame an arbitrarynumber of positions. Further, we can use it to reduce the number of motion parameters to beestimated in the global approach to self-calibration of section 4 from three views. Instead of5�3 = 15 motion parameters, we are left with 5�2+1 = 11 parameters which are the �rst twomotions and the parameter � de�ned in (46). This is a way to express the geometric constraintsassociated to a set of three views taken by the same camera12,5.2 An indirect, monocular approach
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(I�R2)t = �2t2 � �1Rt1 (49)where �1 and �2 are unknown scale factors associated to D1 and D2, respectively. The �rstequation has been much studied in the framework of hand-eye calibration [4] [44], [52], [3]. Thusthe reader is refered to those references for a more detailed analysis of unicity and sensitivity tonoise. We just indicate bellow how, if we perform two displacements of the stereo rig, we cansolve the two resulting matrix equations (48) to compute R, and point out to some constraintswhich arise from the displacement of a stereo rig. The solution of the two vector equations (49)to compute t up to a scale factor is less classical, since it involves working with translationvectors which are de�ned only up to a scale factor, as in the previous case of the trinocularstereo rig which it generalizes.There is an important advantage of this method over the one which consists in computingdirectly the displacement from matches between the �rst and the second camera: since we workin each camera independently, we need only monocular matches which are more easy to obtain,since an arbitrary number of intermediate movements can be performed, and a token trackingprocedure used. On the opposite, �nding directly stereo matches can be di�cult if the baselineof the stereo rig is large, since at this stage the stereo rig is not yet calibrated.Recovering the rotation To solve equation (48), we use a quaternion representation ofthe rotations [40] qR = (s;v)qR1 = (s1;v1)qR2 = (s2;v2)Writing equation (48) with this representation yields:qR � qR1 � qR2 � qR = 0 (50)where � indicates the quaternion product. This gives the two equations:s(s1 � s2) = v:(v1 � v2) (51)s(v1 � v2) + (s1 � s2)v+ v � (v1 + v2) = 0Let us write: v = �v1 + �v2 + (v1 � v2). After some algebra using the properties of thequaternions, we obtain: � = � ; s1 = s2 (52)and then: s = (v21 + v1:v2)�2kv1 + v2k2 + 2(kv1 � v2k2 + kv1 + v2k44 ) = 1 (53)Since there are two unknowns � and , t his last equation determines a one-parameter familyof rotations, which are parameterized by an ellipse lying in the plane (v1 + v2;v1 � v2). It hasbeen shown ([4], an alternative proof is in [31]) that a necessary and su�cient condition for aunique solution is that two displacements with non-parallel rotation axis be performed. Let uspoint out to a binocular constraint which is present in our case:RR1 = R2RRR01 = R02R34



From these relations, we see that we have also:R(R1R01) = (R2R02)RUsing the constraint (52) on the last equation yields: s1s01�u1:u01 = s2s02�u2:u02. Since s1 = s2and s01 = s02, we �nally obtain the equation:u1:u01 = u2:u02 (54)For practical purposes, instead of using (53), we can obtain, as in [4], a linear solution. Wecan notice that (50) has the same form as (37). Thus there exists a 4� 4 matrix G, such that:qR � qR1 � qR2 � qR =GqR (55)G is given by a formula similar to (37). A closed form solution can be obtained with twoequations (55) obtained by two displacements of the stereo rig. If we use more displacements,we can improve the results by using a linear least-squares procedure.Recovering the direction of the translation We suppose that we have computedR,as previously described. A geometrical analysis shows that the matrix I �R2 maps all vectorsin the plane perpendicular to the axis u2 of the rotation R2. Thus, starting from relation (49),we can write: u2:(�2t2 � �1Rt1) = 0This allows us to determine the ratio a = �1=�2. It is then possible to recover the direction t?of the component of t orthogonal to u2, yielding the constraint:t 2 ht?;u2i (56)If a second movement, for which the axis u02 of the rotation is di�erent, is performed, wecan compute similarly a direction t0?. Combining the two constraints (56), and the same withprimes, we obtain t up to a scale factor by:t = �(t? � u2)� (t0? � u02) (57)Note that if we performmore than two displacements, the direction of t can be easily recovered byusing a linear least-squares procedure based on equation (57). This completes the computationof the relative position of the two cameras, up to a scale factor.6 Experimental results6.1 An example of calibration of a binocular stereo rigSelf-calibration of a camera We �rst show the results of the monocular self-calibration,using three images taken by the left camera at di�erent positions of the stereo rig. Results arequite similar for the second camera. In order to make comparisons possible with the standardcalibration method, we have performed displacements in such a way that the calibration gridremains always visible in the left camera.We use between 20 and 30 corners, which are extracted with a sub-pixel accuracy, semi-automatically, by the program of T. Blaszka and R. Deriche [7]. Correspondence is, in thisexperiment, performed manually, and followed by an automatic elimination of false matches.It should be noted that the corresponding points between pairs of images are di�erent, thatis, points need not be seen in the three views. Figure 16 shows the points of interest matchedbetween image 1 and image 2. The standard calibration is performed on each image, using thealgorithm of Robert [41], which is a much improved version of the linear method of Faugeras andToscani [15]. From the projection matrices obtained by this algorithm, the three fundamental35



matrices F12, F23, F13 are computed and used as a reference for the comparisons with ouralgorithm which computes the fundamental matrices from the point matches. The resultingepipoles are shown in table 6. It can be seen that the estimation is quite precise. We have giventwo values of the RMS error, which represents the average distance of corresponding points toepipolar lines. The �rst one (points) is computed over the detected points which were used toestimate the fundamental matrices. The low value (one third of a pixel) con�rms the validityof our linear distortion-free model, as well as the accuracy of the corner detection process. Thesecond value of the RMS (grid) is computed over the 128 corners of the little white squares onthe calibration grid, which were used for model-based calibration. Since these points were notused at all to estimate the fundamental matrices, this provides appropriate control values. Asexpected, the RMS with the control points is sometimes higher than the RMS with the datapoints, but the value remains under one pixel. Some epipolar lines obtained with points that areseen in the three images are shown �gure 17 to illustrate the quality of the estimated epipolargeometry.The cameras intrinsic parameters are then computed from the fundamental matrices. Weshow in table 7 the intrinsic parameters obtained by the standard calibration method using eachof the three images, and the results of our method, with the polynomial method (Section 3.2)and the iterative method (Section 3.3) used to compute all the parameters, or just the scalefactors, starting from the previous value. It can be noted that no initial guess is required atall for the general method. The scale factors are determined with a good accuracy, however,this is not the case for the coordinates of the principal point. Thus the best is to assume thatit is at the center of the image. We have then compared in the table 8 the camera motionobtained directly from the projection matrices given by the classic calibration procedure, andthe estimation by performing the decomposition of the fundamental matrices already obtained,and using the camera parameters obtained by the self-calibration method. The table shows therelative error on the rotation angle �, the angular error �r on the rotation axis and �t on thedirection of translation. It can be seen that the estimation is accurate.

Figure 16: A pair of images with the detected corners superimposed.Extrinsic parameters computation Once the self-calibration of each camera has beenachieved, we have performed two other displacements of the stereo rig. We have not used36



from the grid estimated RMSex ey e0x e0y ex ey e0x e0y points grid1-2 -222.4 181.0 -466.9 167.5 -200.0 185.8 -447.5 170.1 0.36 0.762-3 2226.9 -1065.1 -2817.9 1646.6 2708.5 -1380.1 -2099.6 1315.5 0.31 0.311-3 654.4 -288.8 1114.7 -715.6 680.2 -321.7 1230.9 -842.2 0.26 0.54Table 6: Results of the fundamental matrix estimation in the left camera.

Figure 17: A triplet of images with some estimated epipolar lines superimposed.method �u �v u0 v0 � � �2grid, image 1 657.071 1003.55 244.227 256.617 -2.05e-06grid, image 2 664.975 1015.2 232.61 257.701 -7.47e-07grid, image 3 639.749 980.185 252.174 249.585 -2.60e-06Kruppa polynomial 639.405 982.903 258.980 341.013 -6.11e-03Kruppa iterative 640.12 936.08 206.17 284.95 -0.07Kruppa iterative (center) 681.28 985.69 255 255 0Table 7: Results of the intrinsic parameters estimation in the left camera.motion rx ry rz tx ty tz ��� �r �t1-2 grid 0.01175 -0.2117 -0.01785 -0.7290 -0.06831 0.6809estimated 0.01843 -0.2110 -0.01961 -0.7239 -0.06102 0.6871 0.0005 1.8 0.622-3 grid 0.1900 0.4526 0.1211 -0.9395 0.2779 0.1999estimated 0.1915 0.4682 0.1279 -0.9209 0.2896 0.2608 0.032 0.61 3.71-3 grid 0.2007 0.2533 0.07876 0.6976 -0.5041 0.5090estimated 0.01306 -0.2145 -0.01405 -0.7371 -0.05872 0.6731 0.10 0.98 3.0Table 8: Results of the camera motion estimation in the left camera (�rst sequence).37



1-2 r1=[-0.00012, 0.3130, 0.00773]T t1 = [0.1237, -0.0209, 0.9920]T �1 = .3131r2 =[ .00554, .31196, -.01219 ]T t2 = [0.2953, 0.0160 0.9552]T �2 = .31222-3 r01 = [-0.0334, -0.1098, -0.143]T t01 = [-0.124, 0.5974, 0.7922]T �01 = .1833r02 = [-0.0540, -0.117, -0.133]T t02 = [-0.01089, 0.02439,0.9996]T �02 = .18531-3 r001 = [-0.00224, 0.2054, -0.1307]T t001 = [-0.1882, 0.9809, 0.0476]T �001 = .2435r002 = [-0.06175, 0.198, -0.1385]T t002 = [0.3423, 0.1487,0.9277]T �002 = .2494Table 9: Results of the camera motion estimation in the left and right camera. (second sequence).the three previous displacements because they yield computations that are less stable for themethod we want to illustrate now: the computation of the relative displacement between thetwo cameras of the rig using only monocular matches, the problem being the little di�erenceof motion between the two cameras of the rig. We have performed small displacements whichmaximize this di�erence. The six images are shown in �gure 18 Since only a small part of thecalibration grid is seen, we cannot directly check the results of the determination of cameramotion shown in the table 9. However, we verify the consistency of these results thanks to twofamilies of constraints: the one arising from the fact that the two cameras of the rig are rigidlyattached, and the one arising from the fact that the third displacement is a composition of the�rst two displacements, since only three images are used. The binocular constraints are thatthe angles of rotations of the two cameras are equal for a given displacement of the rig (52),which can be checked in the last column of table 9 and the relation (54), whose residual valuesare here �:00943, :01950, and �:05394. The monocular constraints are obtained from the factthat the composition of the two �rst motions gives the third one. We obtain for the rotations,using (43): r001 = [�:01125; :2027;�:1389]T r002 = [�:02648; :1936;�:1518]Twhich is close to the values actually computed shown in table 9: the relative error on the anglesis 1% and 0.8%, and the angle between the axes is 8:7o and 2:9o. The triple product (44) involvesalso the direction of translations. The value in the left camera is �:0192, and in the secondcamera �:002. Thus we have checked that all the constraints are well satis�ed.We have then computed the relative displacement between the two cameras of the rig, usingdi�erent methods:� The classical calibration method. The reference position is taken in such a way that thegrids cover a large part of each image. It can be noted that when using other positions(the �rst two positions used for self-calibration, where the grids can be seen entirely), theresults vary signi�cantly.� The direct method using stereo matches. It yields very stable results. Adding correspon-dences through images improves rotation accuracy.� The indirect method, using the three pairs of motions, gives results comparable to thoseobtained with images where calibration grids do not "�ll the image frame".The results are in table 10, which shows the rotation vector and the normalized translationvector, as well as the relative error on the rotation angle and the angular error and the rotationaxis and translation direction. Thus, good results can be obtained if stereo correspondences areavailable, and reasonable results are obtained by the monocular method. Precision can be easilyimproved by using more images than the minimal number used here.6.2 Varying the focal lengthWe have applied the method to a camera with a variable focal length. The results are shown intable 11. It allows us to notice that the best results are obtained for short focal lengths, which38



Figure 18: Three pairs of stereo images (arranged for cross-viewing).39



method rx ry rz tx ty tz ��� �r �tGRID (ref.) -0.04097 0.1842 0.05561 0.9992 0.03770 -0.00889GRID (1) -0.04015 0.2285 0.05573 0.9970 0.04541 0.0613 0.21 3.8 4.0GRID (2) -0.03595 0.2042 0.05611 0.9976 0.04234 0.05303 0.09 2.7 3.5STEREO (1) -0.03383 0.2205 0.05298 0.9992 0.03879 -0.00402 0.16 4.7 0.28STEREO (2) -0.03014 0.2025 0.05411 0.9992 0.03902 -0.00157 0.07 4.2 0.42STEREO (1 + 2) -0.04307 0.1895 0.05411 0.9991 0.03804 -0.01655 0.025 0.9 0.44MONO -.04915 .2383 .05322 .9987 -.002223 -.04902 0.26 4.1 3.2Table 10: Results of the estimation of the relative displacement between the two cameras.focal method �u �v u0 v0 � � �2 �u�v9 GRID 481.31 711.54 248.57 260.97 10�7 .6764SELFCALIB 503.49 760.71 250.24 282.67 .661812 GRID 642.45 950.37 248.30 263.31 �5:10�7 .6759SELFCALIB 636.12 921.36 201.52 338.89 .690420 GRID 1036.38 1539.6 252.43 272.53 7:10�8 .6731SELFCALIB 1208.83 1838.48 251.93 200.58 .657530 GRID 1573.20 2330.953 207.98 210.35 4:10�7 .6749SELFCALIB 2047.61 3063.94 249.678 198.463 .6682Table 11: Parameters obtained with a zoom camerayield large �elds of views. Although the focal length is overestimated by the method for largevalues, we can notice that the computed aspect ratio is quite consistent over the whole focalrange.6.3 Reconstructions from a triplet of uncalibrated images taken by acameraWe now show examples of reconstruction using structure from from motion with three uncali-brated views. The approach is to use the global minimization approach presented in Section 4.3,with the variant presented Section 5.1 to account for trinocular constraints.A qualitative experiment The �rst set of images is used to illustrate the feasability ofthe method in a fairly standard indoor environment, such as it appears in the three views of�gure 19. First, self-calibration is performed using the same method as in the previous examples.Then edge detection is performed, and the edge chains are approximated by B-splines, which areprovided as input to the trinocular stereovision algorithm of Luc Robert [42, 41]. The matchingphase of this algorithm uses only the epipolar geometry obtained from the fundamental matricesF12, F13, and F23, which are computed from the point correspondences. The 3D reconstructionphase requires in addition three projection matrices which relate the three image coordinatesystems to a common world coordinate system. They are obtained by taking as the worldcoordinate system, the �rst camera coordinate system, and by �nding the two displacementsD12, D23, as well as the ratio of the norms of t12 and t23 (for which the computation of D13 isneeded), as explained in section 5.1. Results of the reconstruction are shown in �gure 20 as astereogramwhich shows that planar structures and angles are quite well captured. The �gure 21shows two rotated views of the reconstructed scene, one from the side, the other from the top.It can be seen on these views that the estimated distances are also metrically plausible.40



Figure 19: The triplet of images of the indoor scene, with edge chains superimposed.

Figure 20: Reconstruction of the indoor scene from the uncalibrated triplet (stereogram for cross-viewing). 41



Figure 21: Two rotated views of the indoor scene.A quantitative experiment We have further tested the precision of reconstruction ofour algorithm using triplets of images of a standard photogrammetric calibration pattern whichwere communicated to us for testing by the commercial photogrammetry company CHROMA,of Marseille, France. In contrast with the previous images, coordinates of 3D reference pointsare available, which allows us to assess quantitatively the error in reconstruction from theuncalibrated images. The triplet used in this experiment is shown in �gure 22. The points ofinterest are the light dots and have been located and matched manually13. Note that the scalefactors found �u = 1859:47, �v = 2520:79 correspond to a rather long focal length, which isnot very favorable, and that among the three motions between pairs of images, the motion 2-3,whose translation vector was found to be t23 = (�1:186; 0:6623;�0:0857)T , is nearly parallelto the image plane, a defavorable con�guration, as shown in [31, 33]. However, the epipolargeometry found from the three projection matrices obtained by self-calibration is fairly coherent,as illustrated in �gure 23, which shows a zoom with epipolar lines of one the point of interest.We have then performed a 3D trinocular reconstruction from the matched points, using ourcomputed projection matrices as input for a the classical reconstruction algorithm of R. Vaillantand R. Deriche [8]. The 3D points are obtained in the coordinate system associated with one ofthe cameras, since we can reconstruct only up a similarity with the self-calibration technique.Thus in order to compare the reconstruction with the reference data, we have computed thebest similarity which relates the two sets of 3D points, using an algorithm of Z. Zhang. Afterapplying this similarity to the initial reconstruction, the �nal average error in 3D space withthis sequence is 2 millimeters14. A sample of coordinates of reconstructed points are shown intable 12, units being in millimeters. It can be shown that the precision is about 1 part in 50.7 ConclusionWe have presented a general framework to perform the self-calibration of systems of one, orseveral cameras. The basic idea is that the only information which is needed to perform cali-bration are point correspondences. This is contrast with all standard calibration methods. As aside e�ect of the calibration procedure, we can also estimate the relative displacements between13A snake-based ellipse localization program due to B. Bascle, has also been tried.14This is typical, more precise results have been sometimes achieved.42



Reference points Reconstructed pointsX Y Z X Y Z-56.3 0.38 90.1 -55.5 -2.28 89.1-69.7 0.33 110.1 -69.6 -3.02 108.3-41.8 30.0 40.1 -40.9 29.7 40.6-28.2 49.8 90.0 -26.5 49.3 89.2-70.0 30.0 0.035 -69.8 30.4 3.4-112.0 70.2 90.1 -113.8 70.5 88.1-69.5 89.7 90.0 -69.6 90.8 88.9Table 12: Comparison of the 3D reconstruction from self-calibration with reference points.
Figure 22: The triplet of images of the photogrammetric object.

Figure 23: Zoom on the photogrammetric triplet, showing corresponding epipolar lines.43



the cameras and the structure of the scene. The algorithms which arise from this study are themost general possible, in the sense that they do not require:� any model of the observed objects, or any 3D coordinates,� any knowledge of the camera motion, which can be entirely general, with the exception ofa few degenerate cases, and can be computed as a byproduct of the method,� any initial guess about the values of the camera parameters, or any restrictive model ofthese parameters, which describe the most general projective camera model.Thus, of the four pieces of information used in 3D vision (calibration, motion, structure, corre-spondences), our method needs only one input and produces three outputs, whereas the otheralgorithms need at least two inputs or produce at most two outputs, as shown in the table below:Paradigm Cameraparameters Correspondences rigiddisplacement 3DStructureStructure from Motion input input output outputStereovision input output input outputModel-based calibration output input not used inputCalibration from motion output input input not usedThe problem of on-line calibration is now becoming very important in the framework of activevision, where optical parameters such as focus, aperture, zoom, and vergence are constantlychanging, making the use of classic calibration techniques impossible. Thus a number of re-searchers have recently investigated self-calibration techniques. However, all of them have putmore limitations on their methods than we did, by adding supplementary constraints, suchas an initial knowledge of camera parameters which are then only updated [6], or restrictionon the camera motions [9, 2, 27, 54]. When the camera motion is exactly known in somereference frame, then these methods should be rather called "calibration from motion" thanself-calibration, where motion and calibration are estimated. However, one of the most reason-able restriction seems to be a partial control of the motion, which may be performed by a robotichead. In this context, the most general work is that of Viéville [54] where the only additionalassumption is the fact that the motion is a �xed-axis rotation, something well-suited to roboticsheads. More precise and robust results are then obtained.Although we have shown using experiments with real images that our self-calibration methodcan be accurate enough to provide useful 3D metric descriptions, and that the results are oftenof a similar quality than the ones obtained by a traditional method, it must be admitted that themethod has presently its own constraints: not all types of displacements yield stable results, and,as in all calibration procedures, precise image points localisation and reliable correspondencesare necessary.Natural extensions of this work are to investigate the geometry of a system of three cameras,since our formulation does not take into account trinocular constraints at the projective level, butonly at the Euclidean level (section 5). Using a third view should also enable to use lines, whichare usually more stable primitive than points. It can be expected that the resulting algorithmwill have nicer robustness properties. Another idea, which is important in the framework ofactive vision, is to study the case of parameters which are allowed to change over time. Theframework that has been laid out in this paper could prove to be a useful starting point forthese studies which would hopefully result in more truly autonomous vision systems.AcknowledgementsThe authors would like to thank R. Deriche, S. Maybank, T. Papadopoulo, T. Viéville, and Z.Zhang for useful discussions and partial contributions to this work, T. Blaszka and B. Basclefor providing us with point of interest detectors, L. Robert for helping us with his calibrationand stereo software, and H. Mathieu for connecting the cameras.44



A A few proofs of equivalenceA.1 Trivedi equations and Huang-Faugeras constraintsWe now show that the three Trivedi equations are equivalent to the Huang and Faugeras condi-tions. Let �rst suppose that we have (14). Then follows immediately det(EET ) = 0, and thusthe �rst condition det(E) = 0 is satis�ed. Adding T12, T13 and T23, yields :4(S212 + S213 + S223) + S211 + S222 + S233 � 2(S11S22 + S22S33 + S33S11) = 0Since the matrix S is symmetrical, the �rst term can be replaced by: 4(S12S21+S13S31+S23S32),and a simple calculus shows that it is identical to the second Huang-Faugeras condition:trace2(S)� 2trace(S2) = 0Let then suppose that the Huang-Faugeras conditions are satis�ed. They are equivalent to thefact that the matrix E has a zero singular value and two non-zero equal singular values �. Byde�nition, there exists an orthogonal matrix � such as:S = EET =�24 0 0 00 �2 00 0 �2 35�TThis matrix equality can be expanded as:S =2 (�i2�j2 +�i3�j3)1�i;j�3Since � is orthogonal: �i2�j2 +�i3�j3 = � ��i1�j1 if i 6= j1��2i1 if i = jThe diagonal element 1 � �211 (resp. 1 � �221, 1 � �231) can be rewritten �231 + �221 (resp.�211 +�231, �221 +�211), which shows that S has exactely the form (14).A.2 Huang-Faugeras constraints and Kruppa equationsLet us make a change of retinal coordinate system in each of the two retinal planes, so thatthe new fundamental matrix is diagonalised. One way to see that it can always be done is touse the singular value decomposition : there exists two orthogonal matrices� and � such thatF = ���T . If we use matrix � to change retinal coordinates in the �rst retina and matrix� to change retinal coordinates in the second retina, the new intrinsic parameters matrices areA = A0� and A0 = A0� in the �rst and second retina, respectively. If the epipolar constraintin normalized coordinatesm and m0 was:m0TA�1T0 FA�10 m = 0with the new coordinate systems, we have:p0TA0�1T�A�1p = 0Thus it is possible, provided we allow the two cameras to be di�erent, to consider that F is indiagonal form: F = 24 � 0 00 � 00 0 0 35 (58)45



where � 6= 0 and � 6= 0 since we know that a fundamental matrix must be of rank two. Using (58)we obtain easily the epipoles e = e0 = (0; 0; 1)T and the homography h : � 7! ���� , and then,after some algebra, the Kruppa equations:��3�023 + ��13�03 = 0 (E1)��23�03 + ��3�013 = 0 (E2)�2�23�023 � �2�13�013 = 0 (E3)with, lT1 , lT2 , lT3 being the row vectors of A (similar primed notations are used for the secondretina): �3 = hl1; l2i�13 = �kl2k2�23 = �kl1k2 (59)Note that although we use for convenience the three Kruppa equations, only two of them areindependent, since we have for instance the relation:��23E1 � ��13E2 = �3E3 (60)Let now express the condition f(E) = 0. Since: E = A0TFA, some algebra (done partiallyusing the symbolic computation program MAPLE), leads to:f(E) = �12((�2�23�023 � �2�13�013)2 + 2��(��3�023 + ��13�03)(��23�03 + ��3�013))= �12(E23 + 2��E1E2)It is then clear that if the Kruppa equations are satis�ed, then f(E) = 0. Let now prove theinverse implication.In the case where �3 6= 0, the previous equation can be rewritten, using (60):(��23E1 � ��13E2)2 + 2��E1E2�23 = 0 (61)Thus: �2�223E21 + �2�213E22 = 2��E1E2(�13�23 � �23) (62)According to the de�nitions (59) of �3, �13, �23, the Schwartz inequality implies that �13�23� �23is superior or equal to zero. If it is zero, one can obtain from (62) that �23E1 = �13E2 = 0.Since �13�23 = �23 6= 0, it follows E1 = E2 = 0. If it is strictely positive, then 2��E1E2 � 0.The equation (61) is the sum of two positive terms, thus they have to be simultaneously zero,thus E1E2 = 0 and E3 = 0.The only special case which remains is �3 = 0. The Kruppa equations are then in the simpleform: ��13�03 = ��23�03 = �2�23�023 � �2�13�013 = 0which is equivalent to:� �03 = 0�2�23�023 � �2�13�013 = 0 ou � �03 6= 0�13 = �23 = 0and to: f(E) = 2�2�2�13�23�023 + (�2�23�023 � �2�13�013)2 = 046



B Independence of Kruppa equations from three imagesThe two �rst displacements are:R1 = 24 1 0 00 0 �10 1 0 35 t1 = 24 121 35R2 = 24 0 1 0�1 0 00 0 1 35 t2 = 24 20�1 35The displacement obtained by composition of D1 and D2, in the coordinate system of the �rstcamera is: R3 = R1R2 = 24 0 1 00 0 �1�1 0 0 35 t3 = R1t2 + t1 = 24 331 35If we take as intrinsic parameter matrix A the identity matrix, the fundamental matrices areidentical to the essential matrices. By chosing the normalization �12 = 1, the six Kruppaequations obtained are:E1 = 3 �1 � 2 + 6 �3 �13 + 9 �3 + 4 �1 �3 � 7 �2 �13 + 2 �2 + 12 �1 �2 + 3 �1 �13 + 2 �13 2E01 = 3 �23 � 3 �13 �23 + 8 �1 �23 + 1 + �1� �2 �13 � 4 �2 � 4 �1 �2 � 4 �3 �13 � �3 + 4 �1 �3 � �13 2 + �1 �13E2 = 2 �3 �23 + 16 �3 � 8 �2 �3 + 4 �2 �23+ 16 �2 � 16 �2 2 + 4 �1 �13 + 16 �1 � 16 �1 2 + 2 �3 �13 � 8 �1 �3E02 = �23 2 + 4 �23 � 4 �2 �23 � �13 2 � 4 �13 + 4 �1 �13E3 = 6 �23 + 6 �3 + 18 �23 �3 + 12 �3 �13 + 36 �3 2 + 18 �23 �2 + 36 �2 �13 + 36 �2 �3� 6 �23 �1 � 12 �1 �13 + 18 �2 � 36 �1 �2 � 6 �13 2 � 18 �1 + 36 �1 2E03 = 9 �23 2 + 9 �23 �13 + 18 �23 �3 + �23 � 9 �13 + 2 �3 + 6 �23 �2 + 6 �2 �13 + 12 �2 �3� �13 2 � 4 �1 �13 � 9 + 12 �1 + 12 �1 2A solution of the system of equations E1, E01, E2, E02 obtained from the displacements D1 andD2 is: �1 = 0 �2 = �12 �3 = 1 �13 = �4 �23 = 0Substituting these values into the equations obtained from D3 yields: E3 = �27, E03 = 19, thuswe have veri�ed that these equations are independant from the previous ones.References[1] N. Ayache. Vision stereoscopique et perception multisensorielle. InterEditions, 1989.[2] A. Basu. Active calibration: alternative strategy and analysis. In Proc. of the conf. onComputer Vision and Pattern Recognition, pages 495�500, New-York, 1993.[3] H.H. Chen. A screw motion approach to uniqueness analysis of head-eye geometry. In Proc.of the conf. on Computer Vision and Pattern Recognition, pages 145�151, 1991.[4] J.C.K. Chou and M. Kamel. Quaternions approach to solve the kinematic equation ofrotation, AaAx = AxAa, of a sensor-mounted robotic manipulator. In Proc. InternationalConference on Robotics and Automation, pages 656�662, 1988.[5] H.S.M. Coxeter. Projective Geometry. Springer Verlag, second edition, 1987.47
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