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Abstract

We address the problem of estimating three-dimensional motion, and structure from motion
with an uncalibrated moving camera. We show that point correspondences between three im-
ages, and the fundamental matrices computed from these point correspondences, are sufficient
to recover the internal orientation of the camera (its calibration), the motion parameters, and to
compute coherent perspective projection matrices which enable us to reconstruct 3-D structure
up to a similarity. In contrast with other methods, no calibration object with a known 3-D
shape is needed, and no limitations are put upon the unknown motions to be performed or the
parameters to be recovered, as long as they define a projective camera.

The theory of the method, which is based on the constraint that the observed points are
part of a static scene, thus allowing us to link the intrinsic parameters and the fundamental
matrix via the absolute conic, is first detailed. Several algorithms are then presented, and their
performances compared by means of extensive simulations. An application of the method to a
binocular or trinocular stereo rig is also considered. It is illustrated by several experiments with
real images which conclude the paper.

1 Introduction and motivations

The problem of estimating the three-dimensional motion of a camera from a number of token
matches has received a lot of attention in the last fifteen years. Having detected and matched
such tokens as points or lines in two or more images, researchers have developed methods
for estimating the three-dimensional camera displacement, assuming a moving camera and a
static object. This problem is equivalent to the problem of estimating the three-dimensional
motion of an object observed by a static camera. The camera is modelled as a pinhole and its
internal parameters are supposed to be known (the pinhole model and the internal parameters
are defined later). This is the full perspective case. Other researchers have assumed less general
image formation models such as the orthographic model, for example Ullman [53|. In this article
we will assume the most general case of the full perspective image formation model.

When matching points, two views are sufficient and the computation of the motion is usually
based upon the estimation of a matrix called the Essential, or E-matrix after Longuet-Higgins
[30] who first published a linear algorithm (called the eight-point algorithm because it requires
eight point correspondences over two frames) for estimating this matrix and recover the camera
displacement from it from a number of point matches. The properties of the EF-matrix are now
well understood after the work of Faugeras, Huang, and Maybank [20, 14, 36]. This matrix must
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satisfy a number of algebraic constraints which are not taken into account by the eight-point
algorithm. Taking these constraints into account forces to use nonlinear methods such as the
five-point algorithm of Faugeras and Maybank [14].

Assuming that the points being matched are attached to a plane makes things even simpler
as shown for example by the work of Tsai and Huang [50] or that of Faugeras and Lustman [13]

When matching lines, things are a bit more complicated since at least three views are nec-
essary to estimate the 3-D motion. Surprisingly enough, nonlinear estimation algorithms were
discovered first, for example by Liu and Huang, Faugeras, Lustman, Toscani, and Spetsakis and
Aloimonos |29, 16, 46]. The reason for this is that the analog of the E-matrix for lines is tensor
of order three which has not yet been analysed as thoroughly as the E-matrix (see [55] though).
Nonetheless, linear estimation algorithms have been published by Liu and Huang [28].

The thrust of this paper is to extend the previous results to the case where the internal
parameters of the camera are unknown, still assuming the full perspective model. We also
assume that we are given point correspondences. therefore excluding the case of lines. Our
guiding light will be projective geometry which we found to be extremely useful both from the
theoretical point of view in that it has allowed us to express the geometry of the problem in
a much simpler way and from the practical point of view in that this formal simplicity can be
transported to algorithmic simplicity.

We will show that if we take three snapshots of the environment, each time establishing
sufficiently many point correspondences between the three pairs of images, we can a) recover
the epipolar geometry of each pair of images b) recover the intrinsic parameters of the camera
(which we assume not to be changing during the motion) and c) recover the motion of the
camera (using already published algorithms). The focus of the paper is on point b), point a)
being described elsewhere,

Section 2 will be dedicated to the geometric and algebraic modelling of the problem and to
a description of the relations of the present approach to previous ones. In particular, we will tie
the intrinsic parameters to the image of the absolute conic, define the fundamental matrix which
is analog to the essential matrix in the uncalibrated case, relate it to the intrinsic parameters.
We will also define the Kruppa equations from which we will be able to estimate the intrinsic
parameters and relate them to the work on the essential matrix. Section 3 will build upon the
theoretical results of section 2 and describe a method for recovering the intrinsic parameters
of the camera and therefore its motion, as illustrated in section 4. As an application of these
ideas, in section 5 we assume that we have two or three cameras rigidly moving (a stereo rig)
instead of one and show how to calibrate the rig completely, i.e. how to compute the intrinsic
parameters of each camera and the relative displacement between the two or three. Finally, in
section 7, we conclude, and compare our work to that of others.

2 Background and Theory

In this section we lay the ground for the solution of the problem of estimating the motion of
a camera with unknown intrinsic parameters. First we consider the case of a single camera
and introduce the camera model and the intrinsic parameters. We make heavy use of simple
projective geometry. We show that even for a single camera, projective geometry offers a rich
description of the geometry of the problem through the introduction of the absolute conic which
is fundamental in motion analysis. We then consider the case of two cameras and describe
their geometric relations. We show that these relations can be summarized very simply by the
epipolar correspondence (geometric viewpoint) or the fundamental matrix (algebraic viewpoint).
We then describe the relationship between the fundamental matrix and the intrinsic parameters
of the camera through various complementary approaches.



2.1 The pinhole model, the intrinsic and extrinsic parameters, and
the absolute conic

The camera model which we consider is the pinhole model. In this model, the camera performs
a perspective projection of an object point M onto a pixel m in the retinal plane through the
optical center C' (see figure 1). The optical axis is the line going through C' and perpendicular
to the retinal plane. It pierces that plane at the principal point c¢. If we consider an orthonor-
mal system of coordinates in the retinal plane, centered at ¢, say (¢, z., y.) we can define a
three-dimensional orthonormal system of coordinates centered at the optical center C' with two
axes of coordinates parallel to the retinal ones and the third one parallel to the optical axis
(C.,Xc,Ye.Zc). In these two systems of coordinates, the relationship between the coordinates
of m. image of M is particularly simple

. Xc Y
Te = _.f ZC’ Ye = f ZC’

It is nonlinear but if we write it using the homogeneous coordinates of m and M, it becomes
linear:

TeZcow, —f 0 0 0 gcf,c
TC'ZC'yC = 0 _f 00 TCZC (1)
TeZc 0 0 1 0 ; ¢

C

In this equation Z¢x., Zcy. and Zc should be considered as the projective coordinates X, Y., Z,.
of the pixel m and Tc Xc. TcYe, Tc Zc, Te as the projective coordinates Xo, Yo, Zc, 7c of the
point M. We verify on this equation that the projective coordinates are defined up to a scale
factor since multiplying them by an arbitrary nonzero factor does not change the euclidean
coordinates of either m or M.

The main property of this camera model is thus that the relationship between the world
coordinates and the pizel coordinates is linear projective. This property is independent of the
choice of the coordinate systems in the retinal plane or in the three-dimensional space. In
particular we have indicated in figure 1 another world coordinate system (O, X, Y, Z) and another
retinal coordinate system (o, u,v).

The coordinate system (O, X,Y, Z) is related to the coordinate system (C, X¢.Ye, Z¢) by a
rigid displacement described by the rotation matrix R and the translation vector t. If we think
of (0,z,y,z) as the laboratory coordinate system, the displacement describes the pose of the
camera in the laboratory. The parameters describing the displacement are called the eztrinsic
camera parameters. The coordinate system (o,u,v) is related to the the coordinate system
(¢,2¢,y.) by a change of scale of magnitude %k, and k, along the u- and v-axes, respectively, a
rotation of angle /2 — 6 around o followed by a translation [ug,v9]T. The coordinate system
(0,u,v) is the cordinate system that we use when we address the pixels in an image. It is
usually centered at the upper left hand corner of the image which is usually not the point ¢,
the pixels are usually not square and have aspect ratios depending on the actual size of the
photosensitive cells of the camera as well as on the idiosyncracies of the acquisition system. The
angle # models possible deviation from orthogonality of the cells’” arrangement on the retina or
a possible misalignment of the retinal plane with respect to the optical axis. In practice, it is
usually quite close to 7/2. The parameters relating the two retinal coordinate systems do not
depend on the pose of the camera and are called the camera intrinsic parameters.

This camera model is essentially linear and ignores nonlinear effects such as those caused by
lens distorsions. We assume either that they are not significant (which we found in most of our
experiments) or that they have been corrected by standard techniques.

Thus no nonlinear camera distortion is considered which allows us to use the powerful tools of
projective geometry. Projective geometry is emerging as an attractive framework for computer
vision [39]. In this paper, we assume that the reader is familiar with some elementary projective
geometry. Such material can be found in classical mathematic textbooks such as [43, 5, 17],



but also in the computer vision litterature where it is presented in chapters of recent books
[11, 23, 39|, and articles [37, 22].

Using equation (1) and the basic properties of changes of coordinate systems, we can express
the relation between the image coordinates in the (o,u,v) coordinate system and the three-
dimensional coordinates in the O, z,y. z) coordinate system by the following equation

{HZA{HSS}D; _p|? ®
w 0 0 1 0 T T

where U, V, and W are retinal projective coordinates, X,Y, Z, and 7 are projective world
coordinates, A a 3 X 3 matrix describing the change of retinal coordinate system, and D is
a 4 x 4 matrix describing the change of world coordinate system. The 3 x 4 matrix P is the
perspective projection matrix, which relates 3-D world projective coordinates and 2-D retinal
projective coordinates. Except for the points at infinity in the retina for which W = 0, the usual
retinal coordinates u, v are related to the retinal projective coordinates by

The points at infinity in the retinal plane can be considered as the images of the 3-D points in
the focal plane of the camera, i.e. the plane going through C' and parallel to the retinal plane.

Similarly, except for the points at infinity in 3-D space for which 7 = 0, the usual space
coordinates X,Y . and Z are related to the projective world coordinates by

The matrix A can be expressed as the following function of the intrinsic parameters and the
focal length f
—fky  fkycot8 wug

_ fhy
A = 0 —m (N (3)
0 1

Note that it depends on the products fk,,, fk, which says that we cannot discriminate between
a change of focal length and a change of units on the pixel axes. For this reason, we introduce
the parameters a, = — fk,, and o, = — fk,. If § = 7/2, equation (3) takes the simpler form:

a0 wug
A= 0 a (4)
0 0 1

Matrix D depends on 6 extrinsic parameters, three defining the rotation, three defining the

translation. and has the form:
R t
p-(o 1)

There is an interesting and important relationship between the camera intrinsic parameters
and the absolute conic which is central to the problematic of this paper and which we study
now. The absolute conic was used in [14] to compute the number of solutions to the problem of
estimating the motion of a camera from five point correspondences in two views and in [37] to
study the problem of camera calibration. The absolute conic € lies in the plane at infinity of
equation 7 = 0 and its equation is

(5)

X2 4+Y*4+27=0 (6)



Figure 1: The general projective camera model



All points on that conic have complex coordinates. In fact, if we define x = % anf y = DZZ,
the equation can be rewritten z2 + y2 = —1 which shows that it represents a circle of radius
i = v/—1. Even though this seems a little bit farfetched, this conic is closely related to the
problem of camera calibration and motion estimation because it has the fundamental property
of being invariant under rigid displacements, a fact already know to Caylay. The proof of this
can be found in [14, 11]. Let us examine the consequences of this invariance. Since the absolute
conic is invariant under rigid displacements, its image by the camera, which is also a conic with
only complex points, does not depend on the pose of the camera. Therefore, its equation in
the retinal coordinate system (o, u,v) does not depend on the extrinsic parameters and depends
only on the intrinsic parameters. In fact, it is not difficult to show, and this is done in [11, 31],
that the matrix defining the equation of the image of the absolute conic in the retinal coordinate
system (o, u,v) is:

B=A'"TA"! (7)
One of the important ideas which has emerged from our previous work [14, 37, 12| and will also
become apparent in this paper, is that the absolute conic can be used as a calibration pattern
for the camera. This calibration pattern has the nice properties of always being present and of
being free.

2.2 The epipolar correspondence, the fundamental matrix and the
essential matrix

In the previous section, we have discussed the geometry of one camera. We are now going to
introduce a second camera and study the new geometric properties of a set of two cameras. The
main new geometric property is known in computer vision as the epipolar constraint and can
readily be understood by looking at figure 2.

Let C (resp. C') be the optical center of the first camera (resp. the second). The line
(C. C’) projects to a point e (resp. el) in the first retinal plane R (resp. in the second retinal
plane R'). The points e, e’ are the epipoles. The lines through e in the first image and the lines
through e in the second image are the epipolar lines. The epipolar constraint is well-known in
stereovision: for each point m in the first retina, its corresponding point m’ lies on its epipolar
line I/,. If the relative camera geometry is known then, given a pixel m, its epipolar line l,,
can be computed, and its correspondent n/ has only to be searched along 1,,, rather than in the
whole image.

Let us enrich this idea and consider the one parameter family of planes going through (C, C’)
as shown in figure 3. This family is a pencil of planes. Let II be any plane in the pencil, i.e.
containing (C, C’). Then II projects to an epipolar line [ in the first image and to an epipolar
line ' in the second image. The correspondences ITA7 and AL are homographies! between
the two pencils of epipolar lines and the pencil of planes containing (C, C'). It follows that the
correspondance IAN isa homography, called the epipolar transformation.

Now, in order to obtain an operational version of these properties, we are going to introduce
an algebraic formulation, thanks to the key notion of fundamental matriz. It can be shown that
the relationship between the retinal coordinates of a point m and its corresponding epipolar line
I/, is projective linear. The fundamental matrix describes this correspondence:

I =Fm

™

The epipolar constraint has then a very simple expression: since the point m’ corresponding to
m belongs to the line I/, by definition, it follows that

mTFm =0 (8)
The epipoles ¢ and ¢’ are special points which verify the following relations:

Fe=FT¢' =0

Tt can be seen that by construction they preserve the cross-ratio.






They imply that the rank of F is less than equal to 2, and in general it is equal to 2. Since the
matrix is defined up to a scale factor, it depends upon seven independent parameters.

In the practical case where epipoles are at finite distance, the epipolar transformation is
characterized by the affine coordinates of the epipoles € = [e1,e2]T and e’ = [e],e5]T and by
the coefficients of the homography between the two pencils of epipolar lines, each line being
parameterized by its direction:

/ at +b
T T = (9)
et +d
where , ,
My — €9 ;Mg — ey
T=—>" T = =7 (10)
mi — €1 my —eq

and m < m’, is a pair of corresponding points. It follows that the epipolar transformation, like
the fundamental matrix depends on seven independent parameters.

Equation (8) is the analog in the uncalibrated case of the so-called Longuet-Higgins equation
[30]. Indeed, in the case of calibrated cameras, the 2D projective coordinates of a point m give
the 3-D direction of the optical ray Cm (see figure 2), which is of course not the case with retinal
(uncalibrated) coordinates. If the motion between the two positions of the camera is given by
the rotation matrix R and the translation matrix t, and if m and m’ are corresponding points,
then the coplanarity constraint relating Cm’, t, and Cm is written as:

m' - (t x Rm)=m "Em =0 (11)

The matrix E, which is the product of an orthogonal matrix and an antisymmetric matrix is
called an essential matrix. Because of the depth/speed ambiguity, E depends on five parameters
only, i.e. the translation vector is defined up to a scale factor.

It can be seen that the two equations (11) and (8) are equivalent, and that we have the

relation:
F=A'TEA!

Unlike the essential matrix, which is characterized by the two constraints found by Huang and
Faugeras [20] which are the nullity of the determinant and the equality of the two non-zero
singular values, the only property of the fundamental matrix is that it is of rank two. As it is
also defined only up to a scale factor, the number of independent coefficients of F is seven, as
seen previously.

2.3 The rigidity constraint, Kruppa equations and the intrinsic pa-
rameters

Algebraic formulations of the rigidity constraints using the essential matrix
In the case of two different cameras, the transformation between the two retinal coordinate
systems is a general linear projective transformation of P2, depending on 15 parameters. This
transformation can be decomposed in two (possibly similar) changes of retinal coordinates, and
one rigid displacement. The constraints on the intrinsic parameters are obtained by expressing
the rigidity of this underlying displacement, the fact that for any fundamental matrix F, one
can find intrinsic parameters matrices A and A’. such that A'TFA is an essential matrix. We
have seen that only the seven parameters of the fundamental matrix are available to describe
the geometric relationship between two views. The five parameters of the essential matrix
are needed to describe the rigid underlying displacement between the associated normalized
coordinate systems, thus we can see that at most two independant constraints are available for
the determination of intrinsic parameters from the fundamental matrix.
A first set of approaches to express the rigidity constraint involve the essential matrix:

E=ATFA (12)



The rigidity of the motion yielding the fundamental matrix F with intrinsic parameters A and
A’ is equivalent to the Huang and Faugeras conditions expressing the fact that E, defined by (12)
is an essential matrix :

det(E) =0 J(E)= %tra(:ez (EET) - trace(EET)2 =0 (13)

As we have det(F) = 0, the first condition is automatically satisfied, and does not yield any
valuable constraint in our framework, thus we are left with only one polynomial constraint, the
second condition.

A second expression of the rigidity constraints has been presented by Trivedi [48|. If E is an
essential matrix, the symmetric matrix S = EET, which @ priori has six independent entries,
depends only on the three components of t:

[ t2+12  —tits  —tits W
EE" = —[t].> = | —tat1 B+1 —toty (14)
[ —t3ty  —taty 13+t J

The matrix S = EE” has thus a special structure in which the three diagonal and the three
off-diagonal entries are related by the three relations designated by (T;;), 1 <i < j < 3:

45,; — (trace(S) — 25;;)(trace(S) — 25;;) =0 (T3;)

Trivedi has shown that in the case he considered, where the only intrinsic parameters were the
coordinates of the principal point, his three polynomial constraints reduce in fact to a tautology
and two independent polynomial constraints, provided that det(E) = 0. An examination of his
proof shows that this fact is true in the case of a general intrinsic parameters model too. Thus
we are left with two polynomial constraints, in addition to the nullity of the determinant.

We show in appendix A.1 that in spite of the apparent discrepancy in the number of equa-
tions, these approaches to express the rigidity are equivalent. However, the two independent
Trivedi equations which are equivalent to the second Huang and Faugeras condition are not sim-
pler than this one, contradicting what would be expected. They all yield algebraic constraints
which are polynomials of degree 8 in the coefficients of A and A’ (the intrinsic parameters)
and thus are not suitable for practical computation, or even theoretical study. It is why we are
going to counsider a geometrical interpretation of the rigidity constraint which yields low-order
polynomial constraints.

The Kruppa equations: a geometric interpretation of the rigidity constraint
The Kruppa equations [24] are obtained from a geometric interpretation of the rigidity con-
straints. They were first introduced in the field of computer vision by Faugeras and Maybank
for the study of motion [14], and then to develop a theory of self-calibration [37]. In this expo-
sition, we will return to the original formulation, which doesn’t assume that the two cameras
are identical.

Let consider an epipolar plane II, which is tangent to €. Then the epipolar line [ is ‘rdngent
to w, projection of € into the first image, and the epipolar line Iis tangent to the projection w
of Q into the second image. It follows that the two tangents to w from the epipole e correspond
under the epipolar transformation to the two tangents to ' from the epipole el7 as illustrated
by figure 4.

If B is the matrix of w, image of the absolute conic in the first camera, then the matrix of
the dual conic of w is the dual matrix (matrix of cofactors) of B:

K=B" (15)
whose entries are given using the notations of Kruppa, and called Kruppa coefficients:
—023 03 2
K= 63 =013 & (16)

(52 61 _612



e T T T,

Figure 4: The absolute conic and epipolar transformation
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Thus by definition, we have the relations:

01 = Di2bis — bi1bas
b = bagbay — baabsy
03 = b31b3a — basbia (17)
and
512 = b%Z — ()11})22
523 = 1)33 — ()22})33
031 = b§1 — b33b1y (18)

In the second image, we have the same relations, which define a matrix K' = B’*, by its entries
o7, 0.
The epipolar line [ = {e,y) is tangent to w iff:
(exy)'K(exy)=0

by parameterizing the epipolar line | with the projective parameter 7 such that y = (1,7,0)T,
this equation can be written?:

Pl(T) = ki1 + 2k127 + k227'2 =0 (19)

where the coeflicients kq1, k12, koo are defined by

kin = =613 — 51263 — 2061e9
k1a = O12e1e2 — 03 + d2e9 + G161
koy = =823 — 612€; — 285¢1 (20)

Similarly, the epipolar line I’ through €’ corresponding to [ is tangent to w':
Fyy 4 2kpo T+ kgyT 2 =0 (21)

Since 1" correspond to I, its projective parameter 7’ is obtained from the projective parameter
7 by (9), and thus (21) can be written, after substitution:

PZ(T) = kill + 2]6;’27' =+ 227‘ =0 (22)
with:
kpy = Ehob? 4 Elyd? + 2ki5bd;
kyy = 2ki,ad + 2kh,ab + 2k, cd + 2k, be
k;’z = 2kl,ac+ khya® + K},

the coeflicients k;l lylf, kvz being obtained from (20) by replacing the coordinates e; of e with
the coordinates e; of e and the coefficients é;, 6;; with the coefficients bt L.

The p()lyn()mldls P; and P, must have the same roots, which yield three so-called Kruppa
equations, of which only two are independant:

ligokyy — kgoliza = 0
kllkgz — ]ﬂ;rl ]ﬁg = 0 (23)
kukgz - k;’l ka2 = 0

®This assumes that the epipole e is not at infinity. In that case we write e = [e1, e, l]T.

11



It can be shown that the Kruppa equations are equivalent to the Huang and Faugeras con-
straint expressed using the fundamental matrix and the intrinsic parameters. As seen previously,
the null determinant constraint is readily satisfied, thus we have only to show that the set of
Kruppa equations (23) is equivalent to the second constraint, which is done in |31, 34].

The nice thing with the Kruppa equations is that they are only of degree two in the twelve
parameters 6;, 6;;, 0. 6,fj, thus providing a much simpler expression of the rigidity constraint
than the one obtained by the purely algebraic methods described at the beginning of this section.

3 Using the Kruppa equations to compute the intrinsic
parameters

3.1 Using three images taken by a moving camera

A moving camera In an earlier work, Trivedi |48| has considered the problem of computing
only the coordinates of the principal point of each camera, that is to solve the self-calibration
problem for the restricted model of intrinsic parameters:

1 0 u 1 0 !
A:{géiil::} {}

using the three equations (7;;) mentionned previously. The initial idea was that if there were
three such independent equations, then it would have been possible to find a solution as soon
as the number of cameras is superior or equal to three. But Trivedi pointed out that the three
equations reduce to two independent equations, and a tautology, and thus that there are not
enough constraints for the problem to be solved.

Recently, Hartley [18] has brought a partial solution using a simplified camera model, where
the only unknown is the focal distance, thus taking as a model for the intrinsic parameters:

aclotolaz]ot o]
[UOL:J [UOL:J

He exhibits an algorithm to factor the fundamental matrix F as A""ITEA !, which under his
assumption depends also on seven parameters, the two different focal lengths and the five motion

parameters.

If we do not make an additional assumption, it is not possible to use a more general model
for the intrinsic parameters, since by adding views, we add a number of unknowns that is a least
equal to the number of additionnal equations. The idea behind our method is to use constraints
which arise from the observation of a static scene by a single® moving camera. In this case
the intrinsic parameters remain constant: A = A', §; = &}, §;; = r%j, thus we can cumulate
constraints over different displacements, and obtain a sufficient number of equations for the
resolution.

How many displacements are necessary 7 Each displacement yields two independent
algebraic equations. In the case of a moving camera, we have only five coeflicients ¢;, 0;5, to
estimate, since they are defined up to a scale factor. In the general case, three displacements are
necessary. In the case of the simplified model with four intrinsic parameters, two displacements
are sufficient, since we have the additional constraint (33).

3Since a camera is characterized by its intrinsic parameters, this means that we assume that intrinsic parameters
remain constant during the displacements. In the opposite case, the problem we would have to deal with would be
the same than with multiple different cameras.
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But if we perform two displacements, we will obtain three images, 1,2.3. Between three
images, there are in fact three displacements, 1-2, 2-3, et 1-3. One could worry about the fact
that since the third displacement in this case D3 = DsD; is a composition of the two first
displacements Dy and D, the 1-3 equations would be dependent on the 1-2 and 2-3 equations,
thus resulting in an underconstrained system. One way to see that it is not the case is to note
that in our case where we consider displacements only up to a scale factor, the translational
part of displacement D3 cannot be obtained from displacements D; and displacement Ds. since
the norm of the translations is unknown, as pointed out in section 5.1. Let us rephrase the
argument in another way. Two fundamental matrices depend upon 14 parameters. But if we
are to achieve self-calibration, then we have eventually to describe the three displacements 1-2,
2-3, and 1-3 up to a scale factor (11 parameters, as shown in section 5.1) and the 5 intrinsic
parameters. This is a function of 16 parameters, thus the information is not entirely contained
in the first two fundamental matrices. These two missing parameters are actually recovered
thanks to the two additionnal Kruppa equations provided by the third fundamental matrix.
We also give in appendix B a simple numerical exemple to show that in the general case the
equations are independent.

Degenerate cases Not all combinations of displacements will work. For instance, if two of
the displacements are identical, obviously they will yield only two independent constraint.

Also, in the case of a displacement for which the translation vector is null t = (0,0,0)7,
that is if the displacement is a pure rotation whose axis goes contains the optical center of the
camera, as the two optical centers are identical, there is no epipolar constraint, and thus the
rigidity constraint cannot be expressed by means of the Kruppa equations. However, it is known
[47, 49] that a simple method works well in this case.

In the more frequent case where the displacement is a pure translation t = (t1,%,%3)7 , the
rotation is the identity R = I3. The fundamental matrix being antisymetric, it is easy to see
that the epipoles e and e’ are the same, and the homography is the identity 7 — 7, resulting in
Kruppa equations which reduce to tautologies. The coeflicients k:gj from (23) and the coeficients
kij from (20) are identical, since the epipoles are the same, the coefficients £;; and k;; from (23)
are identical, since the homography is the identity. Thus the two polynomials P; and Py are
equal. A geometric interpretation is that since the two tangents to w in the first image are the
same as the tangents to w in the second image, and the epipolar transformation is the identity,
no constraint can be derived from the rigidity.

Intrinsic parameters and Kruppa coefficients We now show that in the case of a
unique moving camera there is a one-to-one correspondence between the Kruppa coeflicients
previously introduced, and the real intrinsic parameters.

Using the relations (15) and (7), we obtain the relation: K = AAT, defined up to a scale
factor A. Using the definition (16) of K, yields:

A(Sl = (24)
A62 = Uy (25)
t0
A3 = wuguyg — Olu.f)/u;olw (26)
Ao = -1 (27)
2
)\623 = —’Illg - alzl (28)
sin
2
«
Ad = - 29
13 O sin%0 ( )

By combining (25), (28), and (27):



and similarly, with (24), (29), et (27):

2 _ 613612 - 6%

32
” 52 sin”
12

(83

By substitution of these two relations in (26), we obtain:

(63012 + 6182)?
(613612 — 62) (823612 — 62)

5
cos” 0 =

Thus we can conclude that the system of equations (24-29) has a real solution if and ouly if the
following three conditions are satisfied:

013012 — (5% >0
0930612 — (()% >0 (30)
(013012 — 62) (823012 — 62) > (83612 + 6182)?

Among these conditions, only two are independent, specifically if the third condition is satisfied,
then the first two are equivalent. I has be shown in [31, 34] that these conditions are equivalent
to the fact that the conic w whose matrix is K* has no real point.

Some algebra then yields the intrinsic parameters:

2
wy = S
’ 812
o1
v = -
‘ 812
82562 + 81362 + 61962 + 2618963 — 6126536
(677 = £ 4 2371 + 139 + 1223 + 1 203 12023013 (31)
612(07 — 613612)

A g\/523(5% + 5135% + 5125§ + 2010203 — 012023613
b 612(03 — d23612)
03012 + 0261
V(823012 — 62)(813612 — 63)
==l (32)

cosfh =

These expression show that they are uniquely determined, except for the sign of the scale factors
a, et a,. From these relations, two remarks can be made. The first one is that the intrinsic
parameters depend only on the ratio of the Kruppa coefficients, which was expected. The second
one is that it is quite simple to formulate the four-parameter model. Since in that case § = 7,
the third constraint (30) becomes simply:

03010 + 6201 = 0 (33)

3.2 A semi-analytic method

Principle Three displacements yield six equations in the entries of the matrix K defined
in (16). The equations are homogeneous, so the solution is determined only up to a scale factor.
In effect there are five unknowns. Trying to solve the over-determined problem with numerical
methods usually fails, so five equations are picked from the six and solved first. As the equations
are each of degree two, the number of solutions in the general case is 32 = 2°. The remaining
equation could just be used to discard the spurious solutions, but we have prefered to exploit
the redundancy of information to obtain a more robust algorithm, as well as a gross estimate of
the variance of the solutions.
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Solving the polynomial system by continuation A problem is that solving a poly-
nomial system by providing an initial guess and using an iterative numerical method will not
generally find all the solutions: many of the starting points will yield trajectories that do not
converge and many other trajectories will converge to the same solution. However it is not
acceptable to miss solutions, since there is only one correct one amongst the 32. Recently de-
veloped methods in numerical continuation can reliably compute all solutions to polynomial
systems. These methods have been improved over a decade to provide reliable solutions to
kinematics problems. The details of these improvements are omitted. The interested reader
is referred for instance to [56] for a detailed tutorial presentation. The solution of a system
of nonlinear equations by numerical continuation is suggested by the idea that small changes
in the parameters of the system usually produce small changes in the solutions. Suppose the
solutions to problem A (the start system) are known and solutions to problem B (the target
system) are required. Solutions to the problem are tracked as the parameters of the system are
slowly changed from those of A to those of B. Although for a general nonlinear system numerous
difficulties can arise, such as divergence or bifurcation of a solution path. for a polynomial sys-
tem all such difficulties can be avoided. Using an implementation provided by Jean Ponce and
colleagues fairly precise solutions can be obtained. The major drawback of this method is that
it is expensive in terms of CPU time. The method is a naturally parallel algorithm, because
each continuation path can be tracked on a separate processor. Running it on a network of 7
Sun-4 workstations takes approximatively half a minute to solve one system of equations.

Continuation-based computation of the intrinsic parameters with three
displacements

e generate six independent Kruppa equations from the three fundamental matrices.
e for each of the six system of five equations &;:

— solve & by the continuation method to obtain the Kruppa coeflicients,
— keep only the real solutions KF which satisfy the constraints (30),
e for each pair of solution lists {IC;-“};,,, «{IC;”}k, increment a counter corresponding to the solution

in the list 4 and the one in the list 7 which minimize the distance*:

5

(1(11,V) — Z ||'lti - UZH

(] o]

=1
where u and v are two 5-dimensional vectors representing individual solutions, and u; and
v; are their components,

e pick up in each list K; the solution which has obtained the highest counter score,

e compute the intrinsic parameters using the formulas (31),

. . . . . . 5
e compute the final solution and an estimate of the covariance by an averaging operator®.

Two examples We have also verified the impact of the orthogonality constraint (33) in two
different cases. In the first one, where we have only two sets of correspondences, we just solve
the system of equations which are the four Kruppa equations and the constraint (33), which is

*This relative distance had to be chosen, because the orders of magnitude of each component are very different.

5In our implementation, we chose to compute the mean value, and to discard iteratively the solutions whose
distance to the mean values are above a certain threshold. The final solution is obtained as the mean value of the
retained solutions, and an estimate of covariance is obtained by computing their standard deviation.
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also quadratic. In the second one, where we have three sets of correspondences, we could use a
very strong redundancy of equations since there are now Cg§ = 15 systems which could be built
by picking four Kruppa equations plus the constraint (33). However, for the sake of comparison,
we have used only six of these equations.

We present in table 1 and table 2 two typical examples® of results obtained by each method,
using synthetic data which are point correspondences at different noise levels. We have tested:

e 2 displacements with the orthogonality constraint (the results are displayed with the three
possible combinations of displacements, the dash indicate that no solution compatible with
the constraints (30) was found),

e 3 displacements with the orthogonality constraint,
o 3 displacements without the orthogonality constraint.

The experimental procedure consisted in choosing three displacements, generating point corre-
spondences by projecting in the two retinas a set of random 3D points and adding Gaussian
image noise, computing the fundamental matrix with a non-linear method 32| from these point
correspondences, and then use the continuation algorithm to solve the Kruppa equations ob-
tained from the fundamental matrices. Numbers in brackets are estimates of the uncertainty of
the results.

noise method Estimated parameters
(pixels) | orth. displ. gy Oy o o 06—
0 640.125 943.695 246.096 255.648 0
0.1 Y 1,2 642.32 947.37 245.82 253.94 10~ 13
Y 2,3 639.44 944.36 246.04 258.59 10713
Y 1,3 641.62 945.73 248.97 255.56 10712
Y 1,2,3 | 641.69 [2.0] 947.49 [3.7] 247.03 [1.2] 256.55 [1.7] 10110 7
N 1,2,3 | 644.40 [2.3] 952.29 [3.8] 237.45 [4.2] 254.61 [1.9] 6.10 ° [10 7]
0.5 Y 1,2 651.39 962.47 244.73 246.56 10712
Y 2.3 636.54 946.72 245.82 270.46 10712
Y 1,3 647.41 953.67 260.91 255.11 10713
Y 1,2,3 | 648.39 [11.1 963.69 [20.3 250.84 [6.7] 260.26 [9.1 1077 [107 7]
N 1,2.3 | 664.1911.2 996.03 [20.6 190.91 [23.8]  248.71[9.1] 4.10 ° [2.10 7]
1.0 Y 1,2 - - - - -
Y 2.3 632.49 948.90 245.50 285.45 10713
Y 1,3 74.85 455.95 733.93 434.07 10710
Y 1,2.3 | 658.00 [24.8 986.63 [45.7] 255.61 [14.3] 265.09 [19.7 10 1077
N 12,3 | 681.66 [25.7] 1109.05 [75.6] 31.10[139.9] 231.99 [20.5 0.13[0.08]
1.5 Y 1,2 676.05 1002.37 241.89 223.28 10~ 12
Y 2,3 627.92 950.11 245.16 300.56 10712
Y 1.3 659.79 971.19 293.82 252.73 10713
Y 1,2,3 | 669.62 [42.6] 1013.85[79.2] 260.16 [23.3] 270.23 [32.3 102110 7
N 1,2,3 | 633.02 [73.0] 1223.62[104.5] 190.46 [231.1] 205.49 [43.9 0.27 [0.2]

Table 1: Results obtained with the continuation method, configuration 1.

The big advantage of the method is that no initialization is needed. If the points are measured
with a good precision, the results can be sufficiently precise. Another advantage is that it is
easy to assess the success or failure of the algorithm. However there are several drawbacks:

e the method is suitable only for the case of the minimum number of displacement, as

it is difficult to use all the constraints provided by a long sequence without increasing
considerably the amount of computations,

6 . . . . . .
It can be seen that results can differ significantly from one configuration to another. For a statistical approach

and a more global assessment of the precision, see next section.
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noise method estimated parameters
(pixels) | orth. displ. oy Oy U Vo 6 — %
0 640.125 943.695 246.096 255.648 0
0.1 Y 1,2 647.56 955.50 245.32 250.58 10713
Y 2.3 124.317 947.934 230.705 252.053 1071
Y 1,3 639.303 943.591 246.083 257.594 10712
Y 1,2.3 640.83 [2.7] 947.59 [2.7] 237.90 [10.2] 252.88 [3.1] 102 10 7
N 1.2.3 636.32 [15.8] 942.45 [5.0] 241.87[5.9] 251.61 [2.8] 0.018 [0.02]
0.5 Y 1,2 - - - - -
Y 2,3 - - - - -
Y 1.3 635.76 042.88 246.03 265.70 10712
Y 12,3 654.01 [24.1 076.83 [22.4 214.28 [47.0] 232.66 [20.7 10 210 7
N 1,2.3 623.63 [78.8 034.15 [31.4 240.84 [2.1] 237.95 [14.7 0.089 [0.09]
1.0 Y 1,2 744.34 1110.38 235.28 187.89 10°1
Y 2.3 - - - - -
Y 1,3 630.86 941.71 245.96 277.04 10713
Y 1,2.3 | 505.94 [248.7 779.03 [389.9] 179.30 [94.4] 407.68 [317.3] 107 |10 7]
N 1,2,3 | 628.20 [130.4 936.94 |68.6] 208.05 217.74 |27.9] 0.15 0.1]
1.5 Y 1,2 2462.05 3943.05 27.53 -558.13 10~
Y 2.3 342.86 875.35 219.38 246.91 1071
Y 1,3 604.46 885.15 249.27 260.23 10712
Y 1,2,3 | 688.43[163.9] 1048.77 [254.3]  161.48 [75.0] 207.08 [38.7] 10 210 ™7
N 1,2,3 | 1190.91 [1164.0] 1803.80 [1867.3] 109.39 [149.1] -109.65 [661.5] 0.13[0.1]

Table 2: Results obtained with the continuation method, configuration 2.

it is difficult to take into account uncertainty for the input (fundamental matrices) as well
as for the output (camera parameters),

the computational cost of solving the polynomial system is relatively high,

it is not possible to express the constraints (30) at the resolution level, since continuations
work in the complex plane.
solution can be found.

Thus with noisy data, it can happen that no acceptable

it is not very easy to use some a priori knowledge that one might have about the intrinsic

parameters .

All these drawbacks come from the use of the continuation method and can be overcome using
an iterative formulation.

3.3 Iterative formulations

In this approach, we do no longer make use of the simple polynomial structure of the Kruppa
equations, but rather consider them as measurement equations relating directely fundamental
matrices to intrinsic parameters, obtained by substituting the values (24-29) into (23). We can
then solve them either by a batch non-linear least-squares minimization technique, or by an
extended Kalman filtering approach.

Global minimization The choice of the criterion to be minimized is very important. We

have noticed two things. First, using the three Kruppa equations even though they are not in-

dependent provides additional constraints and improve the results. Second, minimizing directly

the value of the residual of expressions (23) do not work well. The reason is the well known
a; a;

fact that minimizing a criterion y (% — 7#)? is quite different from minimizing Y- (a;b} — ajb;)?

because the later is weighted by the variable quantity b;b;. In our case, since we are interested
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in expressing the proportionality of the polynomials P; and P, from (19) and (22) we thus try
to minimize the following criterion:

. kll k12 kl2 kl2 kll kll
min (o = )+ (o = )+ (e = ) (34)
gy s Oy U0, V0 0 p ]{,11 k12 ]4,22 ]4,22 ]1,22 ]1,22

where the coefficients k;; and ki’ are defined in (20) and (23).

We have compared this method with the continuation method, using a statistical approach
involving 100 triples” of displacements. To obtain an idea of the precision and convergence
properties, we have started the minimization with different initial values: (1) the exact values,
(2) the values given by the continuation method, (3) the arbitrary values a,, = 800, a, = 800,
uy = 255, vg = 255, 0 = %, corresponding to the relatively standard situation of an orthogonal
grid. no principal point shift, and reasonable values for the scale factors (with no knowledge of
aspect ratio). The table 3 shows the mean relative error for each parameter, obtained at two
different noise levels: 0.2 is approximately the subpixel precision of the model-based feature

detectors, whereas 1.0 pixel is the typical precision of some operator-based feature detectors.

noise method | failure parameters
(pixels) Qy, Qly i i f— %
0.2 Continu 2 0.056 0.062 0.133 0.136 0.035
Mini (1) 0.025 0.028 0.071 0.095 0.034
Mini (2) 0.054 0.056 0.106 0.123 0.051
Mini (3) 0.065 0.063 0.136 0.153 0.055
1.0 Continu 7 0.120 0.141 0.263 0.321 0.080
Mini (1) 0.115 0.141 0.261 0.327 0.098
Mini (2) 0.138 0.160 0.274 0.370 0.130
Mini (3) 0.174 0.184 0.281 0.360 0.135

Table 3: Statistical results with 3 displacements (see text).

We can conclude from these results that:

e the precision on the scale factors o, and «,, is better than the one on the principal point
coordinates ug and vy,
e the results are quite sensitive to the choice of the initialization point,

e the precision of the iterative method is roughly comparable with the precision of the
continuation method,

Since the number of equations and parameters is relatively small, the method is computationally
efficient. Its main disadvantage is the need for a good starting point, but it could be obtained
by the continuation method.

Recursive filtering If we have a long sequence, it may be interesting to use the Iterated
Extended Kalman Filter®, with the following data:

vector of state parameters a= (oz,,,,., Oy, U 'u(,)T
vector of measurements x = (P11, F1o, P13, Faq, Foy, Fog, F3q, F3o, F33)T
measurement equations f(x,a) =0, f; and fo are two Kruppa equations (23)

"The results improve if one considers more displacements. See next paragraph.
8 As it is a classical tool in computer vision, we do not give details on the filter itself, and rather invite the interested
reader to read the classical references [21] [38], or the more practical presentations which can be found in [1], [11],

and [59].
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estimated parameters

The perpendicularity correction factor has been dropped to reduce non-linearities in the model,
and we have only used two Kruppa equations to ensure that the measurement equations are

independent. Figure 5 shows an example obtained with 0.5 pixel of image noise. The convergence
happens between 5 and 10 displacements.

400 per=—T=T=TT=T =TT =T=T=T=T=T=T=T=T~TT~T=T~T~T~T
360 - ___ apha.u .
1000 =TT T T T T I‘_ A
320 | -
900 : .... apha v ]
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9 : — uo 1
— - ' .
700 ® 240
-§ : vO ]
600 - -- -
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© \ ]
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3 120 R -
300 = - N i
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0 | | | | | | | | | | | | | | 0 ] ] ] ] ] ] ] ] ] ] ] ] ] ]
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displacement displacement

Figure 5: An example of computation of intrinsic parameters by Kalman filtering.

Statistical results have been conducted to see the effect of the increase of the number of
displacements and to compare the Kalman method to the batch minimization approach®. In
table 4 the Kalman filtering has been initialized with the parameters estimated from the mini-
mization technique using the first three displacements. The fact that the average error remains
approximatively the same for the parameters a,, and «, is due to convergence to false local
minima induced by inexact starting points, and the fact that in the Kalman filter approach,
the full information provided by all the displacements is not available, due to the recursive na-
ture of the approach. Thus, statistically, the global minimization gives better results, a finding
consistent with those of [57] and [26]. However, if the starting point is precise, as in table 5,
where it is found by the minimization method using a larger number of displacements, it can be
seen that the results are slightly better, which may be due to the fact that uncertainty is taken
into account. In this table, we have mentioned not only the average relative error, but also the
percentage of cases for which the final error was superior to 5%, which shows that if the Kalman
filter does not fall into a false minimum, it improves the results significantly.

3.4 An evaluation of the method

From the numerous simulations that we performed (some of which were described in this section),
it appears that all the methods give results which are comparable, in the sense that none of them
gives clearly superior results. In the case of minimal number of displacements. the continuation

method seems however preferable, whereas the iterative approaches are well suited to the case
where more displacements are available.

°The apparingly less good results come from the fact that there was no requirements on these experiments on the

minimum number of point matches generated, and thus often very few points have been used, in contrast with the
previous experiments, where we started with at least 30 points
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noise nb Oy, Oy Ug [
(pixel) | displ | mini  kalman | mini kalman | mini kalman | mini kalman
0.2 3 0.1494 0.1389 | 0.1487 0.1398 | 0.3047 0.2778 | 0.3091  0.2840
5 0.0952 0.1377 | 0.0837 0.1462 | 0.2264 0.2676 | 0.2591 0.2713
10 | 0.0652 0.1390 | 0.0714 0.1333 | 0.1970 0.2343 | 0.2401  0.2407
15 | 0.0464 0.1392 | 0.0753 0.1201 | 0.2033 0.2243 | 0.2042 0.2167
1.0 3 0.3886  0.3535 | 0.3944 0.3647 | 0.5237 0.5070 | 0.5783 0.5540
5 0.3335 0.3383 | 0.3124 0.3664 | 0.4742 0.4936 | 0.499 0.5221
10 | 0.2875 0.3534 | 0.2913 0.3707 | 0.4406 0.4644 | 0.5144 0.4888
15 | 0.3017 0.3662 | 0.2710 0.3712 | 0.4336 0.4348 | 0.4954 0.4774
Table 4: Comparison of minimization and Kalman filtering (1).
noise Uy Uy U Vo
(pixel) mini  kalman | mini kalman | mini kalman | mini  kalman
0.2 err 0.0412 0.0408 | 0.0737 0.0659 | 0.1832 0.1448 | 0.1916  0.1396
% err > 0.05 22 13 28 15 48 29 58 40
1.0 err 0.2337  0.2498 | 0.2245 0.2796 | 0.4165 0.3500 | 0.4854 0.4171
% err > 0.05 68 49 64 58 78 59 78 72

Table 5: Comparison of minimization and Kalman filtering (2).

In any case. the main limitation of the method comes from the necessity to get precise
localization of the points in order to compute precise fundamental matrices. A subpixel accuracy
of about 0.2 to 0.5 pixel is necessary in order to get acceptable results. It means that the most
Some types of displacements will not work well,
specifically those leading to nearly degenerate cases for Kruppa equations, mentioned in this
section, and those leading to unstable computation of the fundamental matrix, which are studied
in 31, 33].

Another limitation might be that the method does not give an accurate estimation for the
position of the principal point, and the angle of retinal axes. The later is of no importance, since

in practice it is very well controlled and very close to Z. Thus this information can be used,

either to restrict the model, or to discard false solutions. 2We will see in the next section that the
former is also of little importance, in the sense that it does not affect a lot the subsequent stage
of the calibration, the estimation of 3D motion. In fact, we will see that even with imprecise
values of the camera parameters, fairly acceptable motion parameters can be recovered, and
that furthermore, during this process of recovering the motion parameters, the estimation of

intrinsic parameters can be refined.

4 Taking into account the motion of the camera

We suppose now that we have obtained the intrinsic parameters A of a camera. Our next goal
is to compute the three-dimensionnal motion from pairs of images. This computation can be
done quite robustly even with imprecise camera parameters. We can take advantage of this
remark to combine this computation with the computation of intrinsic parameters. We obtain
another iterative approach to self-calibration, which yields more robust results than the Kruppa
approach.
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4.1 Computing the motion after calibrating

The motion determination problem from point correspondences is very classical. See [16] [45]
[57] [19] for solutions similar to ours. We present two different solutions, both based on the
computation of the fundamental matrix.

A direct factorization We have seen that during the course of intrinsic parameters es-
timation, we had to compute the fundamental matrix F, from which the essential matrix is
immediately obtained:

E=ATFA (35)

The problem of finding the rotation R and the translation t from E is classical [30, 51, 16].

As we have, by construction, found a F-matrix of rank two, the direction of translation is
just obtained by solving: ETt = 0.

To find the rotation, we use a method introduced by [16]: in the presence of noise, we
minimize with respect to the rotation matrix R the criterion:

3
C=> |B —RTT,|?
i=1
where E; and T; are the three rows of the matrices E and T, respectively. Using q a quaternion
representing R, some properties of this representation yield:

3
C=> |axE;—T;xq/| (36)

=1

where x denotes the quaternion product. It follows from the definition of the quaternion product
that q x E; — T; x q is a linear function of the 4 coordinates of q. Therefore, there exists a 4 x 4
matrix N; such that:

T v dle Nog i _ 0 (E; - T;)"
|lax E; —T,; x q|=N;q with N; = < Ti—E; [Ei. +[T]. ) (37)

Therefore, the problem reduces to a linear least-squares problem:

3
mianNiN?qT subject to the constraint: ||q* =1
q
2=0

which is a classical minimization problem. whose solution is the eigenvector associated with the
smallest eigenvalue of N = Z?:l N,NT. Tt can be noted that this solution is entirely equivalent
to the well-known method of Tsai and Huang [51] , which has been recently proved to be optimal
by Hartley [18] . We denote this algorithm by FACTOR.

An iterative solution An alternative method is to use directly the criterion that has been
used to determine the fundamental matrix. In [32| different parametrizations for this matrix
have been proposed to take into account constraints on its structure and linear and non-linear
criteria for its estimation were also considered. We then clearly show that the linear criterion:

: 'T 2 : T
~Fm,; subject to Tr(F*F) =1
min E (m,;” Fm;)* subject to Tr( ) (38)

is unable to express the rank and normalization constraints. Using the linear criterion leads
definitely to the worst result in the determination of the fundamental matrix. To overcome the
major weaknesses of the linear criterion, different non-linear criteria were proposed and analyzed
in great detail. We have found that the following criterion works well:

ming{d(m”,Fm)? + d(mT, FTm’)?} (39)
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where d is a the Euclidean distance in the image plane between a point and a line.

We denote by MIN-LIN'” the minimization of the error criterion (38) and by MIN-DIST
the minimization of the error criterion (39). The knowledge of the intrinsic parameters allows us
to minimize these criteria with respect to five motion parameters: we parameterize T by t1/ts,
ta/ts and R by the three-dimensional vector r whose direction is that of the axis of rotation
and whose norm is equal to the rotation angle. We use, as a starting point for this non-linear
minimization, the result obtained by FACTOR.

4.2 An experimental comparison

The case of exact intrinsic parameters In the first comparative study, we suppose
that the ezact intrinsic parameters are known. The graphs have been obtained using 200 dif-
ferent displacements, and show the average relative error on the rotational and translational
components. As the non-linear methods require a starting point whose choice is important, we
have considered the three possibilities:

1. the exact motion, to test the precision of the minimum (figures 6 and 7).

2. the motion obtained by FACTOR, which is the realistic initialization (figures 8 and 9,
label 2).

3. an arbitrary motion: r = (% %, %)T, t = (0,0,1)T, to test the convergence properties
(figures 8 and 9, label 2).

The conclusions of the simulations are:

e The computation is more stable than the fundamental matrix computation. Motion com-
putation is a less difficult problem.

e The rotational part is determined more precisely than the translational part.

e The iterative method based on MIN-DIST is the most precise, but it is the most sensitive
to the choice of the starting point.

e The results obtained by MIN-DIST and by FACTOR in the realistic case are very close.

Note that even using MIN-LIN, the results are much more precise than those usually found
by using a purely linear methods such as the eight-point algorithm [51, 10].

Sensitivity to errors on the intrinsic parameters Very few results are available
concerning the sensitivity of motion and structure computations to errors on the intrinsic pa-
rameters [25]. It is nevertheless an important issue, as it determines the precision of calibration
that it 1s necessary to achieve to obtain a given precision on the three dimensionnal reconstruc-
tion, which is the final objective. We present here some experimental results which give an
idea of the numerical values. Figure 10 represents the effects of the error on the location of the
principal point. The exact principal point is at the center (255,255) of the image, and we have
used for the computation of the motion principal points that were shifted from 20 to 200 pixels
following a Gaussian law. Each point on the figure represents 100 trials. Figure 11 represents
the effects of the error on the scale factor, which has been similarly made vary from 2.5% to
25%. Among the numerous conclusions that can be drawn from the graphs, we would like to
emphasize the following:

e The effects of the imprecision on intrinsic parameters are significant; however, until rel-
atively large errors are reached (10% on the scale factors, several tens of pixels for the
principal point), these effects are less significant than those due to noise (for example, if
the image noise increases from 0.6 to 1.0 pixels).

19 Although it is not a linear method, but a non-linear method based on the same error measure than the linear
criterion for the computation of the fundamental matrix.
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Figure 6: Relative error on the rotation, initialization with the exact displacement.
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Figure 7: Relative error on the translation, initialization with the exact displacement.
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Figure 8: Relative error on the rotation, initialization with two different values (see text).
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Figure 9: Relative error on the translation, initialization with two different values (see text).

24



e The sensitivity to errors on the principal point is less than the sensitivity to errors on the
scale factor: in terms of relative errors, a 120 pixels shift of the principal point is 50%
error and has the same effects as a 25% error on the scale factors.

e The iterative criterion MIN-DIST is more sensitive to the error on the intrinsic parame-
ters than the solution of FACTOR. This can be explained by the fact that the fundamental
matrix, which is directly used by FACTOR partially retains the information on the exact
intrinsic parameters, whereas the iterative method compensates entirely the error on the
intrinsic parameters by an error on the computed motion.

4.3 A global approach to compute simultaneously calibration and mo-
tion

Using a single displacement A natural extension of the previous techniques is to min-
imize the criterion (39) simultaneously with respect to the five motion parameters previously
introduced and to the intrinsic parameters, by substitution of A“TTRA ™! in place of F.
Although the number of equations appearing in the least-squares formulation is the number of
point matches, which may be very large, we must remember from the analysis made in section 2.3
that only two parameters can be computed. Since we have seen that the most significant are a,,
and «,,, we chose to allow them to vary and to leave ug and v fixed. The relative errors obtained
on the motion parameters are shown in figure 12. They are to be compared to figure 11, and to
facilitate this comparison, we have also plotted on this figure the two curves obtained in figure 11
for the two extreme noise levels. This superposition makes it clear that the new method is much
less sensitive to initial errors on the scale factors, but more sensitive to noise. The final error
on the motion are compensated by errors on the camera parameters, as seen in figure 13, which
shows that the final error on the camera parameters depends mainly on the noise, and not on
the initial error on the parameters until 25%. where some convergence problems appear. They
are revealed by the fact that the final error increases whereas the noise level remains constant.
If the algorithm achieved perfect convergence, the same solution could be found for a given noise
level, and thus the final error would not depend at all from the starting value.

Global minimization using multiple motions If we have several camera displace-
ments, then the previous approach can be used to estimate all the camera parameters, and to
further constrain the problem, if more than three displacements are available. Since the mini-
mization is highly non-linear, and involves a large number of unknowns, to obtain convergence
we need a good starting point, which can fortunately be obtained from the previous method. Let
us summarize the new algorithm, which can accomodate N independant displacements (N > 2),
and, for each displacement ¢, a minimum of eight correspondences (q;;, qu)J :

25



relativeerror on therotation

relative error on therotation

0.50 riT. 11171 r1r— 1o
— a 1.8 =image noise (pixels)
_ol4
0.40 b ° i
_ ¢ 10 -
* - - - =)
...0 06 - -
= -0
0.30 402 .- I Rt

0.00 L L L L L L L L L
’ 0 20 40 60 80 100 120 140 160 180

error on theprincipal point (pixels)

0.00 L L L L L L L L L
' 0O 20 40 60 80 100 120 140 160 180

200

error on the principal point (pixels)

relative error on thetransation

relative error on thetranslation

. 50 [rp—e————

00 1 1 1 1 1 1

60 80 100 120

error on the principal point (pixels)

140 160 180

200

00 1 1 1 1 1 1

60 80

error on theprincipal point (pixels)

100 120 140 160 180

200

Figure 10: Sensitivity of motion computation to errors on the principal point. Top: FACTOR,
Bottom: MIN-DIST, Left: rotation, Right: translation.

26



relative error on therotation

relative error on therotation

.50

.30 |

.20

.10

.50

.40

.30

.20

.10

.40

— a 1.8 =image noise (pixels)
_ol4
— 10

.00

error on the scale factors (%)

00

L
0. 05 0.10 0.15 0.20 0.25

error on the scalefactors (%)

relative error on thetrandation

relative error on thetrandation

0.05 0.10 0.15 0. 20 0.25

error on the scalefactors (%)

0. 05 0.10 0.15 0. 20 0. 25

error on the scalefactors (%)

Figure 11: Sensitivity of motion computation to errors on the scale factors. Top: FACTOR,
Bottom: MIN-DIST, Left: rotation, Right: translation.

27



relative error on therotation

.50

.40

.30

.20

.10

.00
0.

relativeerror on the scale factors (%)

relativeerror on the scalefactors (%)

Figure 12: Sensitivity of motion computation to errors on the scale factors, in the case the scale

factors are allowed to vary. Left: rotation, Right: translation.

ot

. Minimize, with respect to the 5N + 4 variables (or 5N + 2 if ug, vy are taken as the image

Global computation of intrinsic parameters and motion

Compute the N fundamental matrices F;.

Start from an initial estimate of the intrinsic parameters ., ®,, %o, v9, using one of the
Kruppa methods.

Compute the N initialisation motions (r;,t;) using FACTOR, from F; and the parameters
Ayyy Qg y Uy Vo,

center) the criterion:

N
Lomin YN (AT TRA i) + (g, ATTRITIA ) (40)
where d is the Euclidean point-line distance, T, = [t;]x, R; = c[”}x, and A =
ay 0w
0 ay v
0 0 1

Perform again stage 3 with the new intrinsic parameters (optional).

A comparison We now present some statistical simulation results to show that the new
global method can significantly improve upon the results obtained by the methods based on the

28

0.50 ' I ' I T 1 T T T
0.40 | -
Aen mm wm Aem —r — — — - — "‘ ."h
_'A1.8'=ima'genolise(p'ixels)I ' __..r"" k
-old ...a LBFACTOR 5 "'"':8:'-""“"'"8-“‘--——o—----°--—""
| _ 410 02 FACTOR = 0.30 fuasnunmen .
006 - 2
~ S N _ 4
402 e = L - —e— - — — . — — o -
™~ - _——h— = -“ﬁ..-l".‘ -— =
= S 0.20 F L -]
i--__“_.'..__..--“‘—"-‘s _____ o‘-_——.‘o-__--‘x % K" ___-4
...... o i
A | 5 0 k.. On-- Lg#2-O" 4
[ e — —— — —— 8T — S QO O -mmmnnnn- ke
e o e
---------- L it T T L OMUIP IR LLLL L g 0.10 L -
L ‘_." _ % .- -
| 3 } ——= ]
'-‘ —_ -
L L . ! 0.00Q L L L 1
00 0. 05 0. 10 0. 15 0. 20 0. 25 0. 00 0.05 0.10 0.15 0.20 0.25



0.50 . . , . , . , .

! ’!

— 4 1.8=image noise (pixels) P
&

- l4 Re
"

0.40 |— 10 - Re 1
- = initial error R 7
---006 . £ )

relative error on thefinal scalefactors

] ] ] ]
.00 0.10 0.20 0.30 0. 40 0.50

relative error on the scalefactors (%)

Figure 13: Final scale factors obtained when computing the motion.

Kruppa equations (denotated by KRUPPA). The denotations are followed by the number of
displacements used. The abbreviation MOUYV designates the global method, initialized with
the starting point already used in the previous section (800, 800, 255, 255). The abbreviation
MOUV-KRUPPA designates the global method, initialized with the values obtained by the
Kruppa method. The image noise has the same meaning than previously, that is Gaussian
noise added to pixel coordinates of point correspondences. In figure 14, each point represents
100 trials, obtained by varying the intrinsic parameters and the camera motions. We have
represented the average error on the scale factors. We have given both the results with wuy and
v9 fixed and varying.

Let us try to characterize the two methods. The first stage for each method is identical: it
is concerned with the determination of the fundamental matrices. Then in the second stage of
determining the intrinsic parameters, the method based on the Kruppa equations use only these
matrices, the rigidity constraint being used to eliminate the unknown motion parameters. Thus
the method involves only the unknowns we try to compute, and allows for a semi-analytical
solution, as well as for efficient iterative solutions. Contrary to this, in the global method based
on the decomposition of the fundamental matrix, it is the form of the parameterization which en-
sures that all the constraints are satisfied. Then we have to compute explicitely all the unknowns
in the problem, and thus need a good starting point and more intensive computations. However,
first the criterion takes into account more constraints, since it ensures the exact decomposability
of each fundamental matrix under the form A"TEA !, with an unique intrinsic parameters
matrix. Thus it achieves a minimal parameterization of the unknowns. In the Kruppa approach,
the fundamental matrices obtained verify further constraints, which are precisely the existence
of solutions for Kruppa equations, and these constraints cannot be enforced at the first stage of
the computation. Moreover, using the technique mentionned later in Section 5.1 allows us to
take into account trinocular constraints. Second, the criterion uses directly more information.
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This explains that we obtain more precise results.

4.4 An evaluation of the results

In this section, we have studied the computation of the motion parameters in the context of self-
calibration. One finding is that althougth in a classical context where the camera parameters
are known accurately, the non-linear minimization techniques provide the most accurate results
for the motion parameters, the best method in our context is the decomposition of essential
matrix method. This method is very fast and not very sensitive to the errors on the camera
parameters.

Once an estimate of the motion has been obtained this way, we can simultaneously refine the
camera and motion parameters. So far this method has proved to be the most reliable. Although
its principle is very simple, it nevertheless depends on the availability of a starting point, and
the methods presented in the previous section are perfectely adequate for this purpose, since
some of them do not even need an initialization.

5 Computing the extrinsic parameters of a stereo rig and
recovering structure from multiple viewpoints

In the usual calibration method, we work in the world coordinate system, using a 3D model of
an object present in the environment. It is assumed that we know the 3D coordinates of some
of reference points on the object in a coordinate system attached to the object. The extrinsic
parameters define the displacement from the object’s coordinate system (taken to be the world
reference frame) to the camera coordinate system. In this part, we do not use any 3D model,
so we do all the computationsin the cameras coordinate system, and use as the world reference
frame the one attached to the first camera. Thus, in our case, the extrinsic parameters define
the displacement from the first to the second camera, computed in the first camera coordinate
system. Since we do not have any metric information, we can compute this displacement only
up to a scale factor.

Two different approaches are presented. The first one is straightforward in the case of a
binocular stereo rig and more subtile in the case of a trinocular stereo rig, but it needs inter-
camera point matching. The second enables us to obtain the inter-camera relative displacements
using only monocular point matches. Two displacements of the stereo rig are, in general,
sufficient to obtain a unique solution.

5.1 A direct approach: binocular and trinocular stereo rig

The most straightforward approach is to apply the techniques previously presented using point
correspondences established between the different cameras of the stereo rig. How to obtain
these correspondences automatically is not the subject of this paper. The advantage of this
approach is that, since the relative displacement between the cameras is fixed, it is possible
to accumulate point matches between pairs of images taken at different times. Using multiple
displacements, it is possible to obtain a number of point matches far larger than the one that
could be obtained from a single pair of images, which allows to obtain very precise results. This
idea has been developped in [58]. Let us now explain how the perspective projection matrices
are obtained, from available data which are now the relative displacements from cameras 7 to
cameras j, obtained only up to a scale factor, and expressed in the coordinate system of camera
1.

The binocular case The world coordinate system that is used all the way in this section
is the coordinate system attached to the first camera, taken at the first position. It means, as
mentionned in Section 2.1, that the perspective projection matrix attached to the first camera
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can be written: P; = [A; , 0], where A; is the 3 x 3 intrinsic parameters matrix of the first
camera. The extrinsic parameters of the stereo rig are the parameters of the displacement D5
between the first camera and the second camera, expressed in the coordinate system of the first
camera. Thus the two projection matrices are:

P;y=[A;, 0] P;=P;Dy; =[A3R;5, A>Ty, (41)

where A, is the intrinsic parameters matrix of the second camera, and R,2 and T15 the rota-
tional and translational components of the displacement Dy2. In practice, when working only
from images, we only know the direction of the translation, and thus usually use the unit vector
t12 instead of Tqo. If we replace T1z by t12 in (41), the last row of the projection matrix Py is
multiplied by an unknown scale factor. The 3D reconstruction obtained is nevertheless coherent,
up to a scale factor. A single metric information concerning the motion, or the 3D length of a
feature measured in an image, would be sufficient to determine this scale factor.

The trinocular case In the case of three cameras (designated by 1, 2 and 3), using again
the first camera coordinate system as a reference, the three projection matrices can be written:

P,=[A,, 0] P;=P;D;; P3=DP;Dy3 (42)

Where D;5 is in the coordinate system of the first camera, and D3 in the coordinate system of
the second camera. These are quantities which can be computed from images, with the important
detail that while computing camera motion, we are not able to determine the translations Ty,
and Ta3, but only the directions t12 and to3. While in the case of two views it is appropriate
to use the formula (41) and to replace T12 by ti12, since this results only in a global scene scale
factor, if we want to perform the reconstruction using three views!'!, we have to obtain three
coherent projection matrices, and it is not appropriate to use formula (42) and to replace T12
and Ts3 by t12 and ta3. This would yield an incorrect result, in which the epipolar constraint
between the images 1 and 3 is not satisfied, since the direction of translation between Py and P
computed in this way would be generally incorect. The difficulty comes from the fact that if we
know two displacements only up to a scale factor, it is only possible to determine the rotation:

Ris = RosRys (43)

but not the direction of the translation of Dy3D45, the only constraint being that it belongs to
the plane: (ta3, Rastia):

t13 - (t23 X Rosti2) =0 (44)
The ratio A = % must be known, as well as the relative signs. Thus, from the knowledge
of Ria, Ros, t19, flg there is no way to build three coherent projection matrices. In order to
determine the ratio, we have also be able to compute the displacement D43 in the first camera
coordinate system, to determine the direction of translation t13. Since we want to reconstruct
from the images 1, 2, and 3, there must be a portion of the scene visible in both image 1 and
image 3. and thus, it is a reasonnable requirement. By expressing the proportionality constraint:

ti13 X (Rgglll + /\112) =0 (45)
where u; = HEjH and uy; = HEZH’ we obtain:
N (ti3 X Rogwi )y (13 X Rogti)s _ (t13 X Rogu)s (46)
(t13 X uz2); (t13 X ug)2 (t13 X ug)3

Taking t12 = ui, tas = Auy, we then obtain, using (42) three perspective projection matrices
that are all mutually coherent.

111t is well known that trinocular stereo algorithms are more efficient and yield more precise 3D reconstructions.
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It can be noted that this approach can be also used in the case of structure from motion
(eg: one unique moving camera) in order to register in a same coordinate frame an arbitrary
number of positions. Further, we can use it to reduce the number of motion parameters to be
estimated in the global approach to self-calibration of section 4 from three views. Instead of
5 x 3 = 15 motion parameters, we are left with 5 x 241 = 11 parameters which are the first two
motions and the parameter A defined in (46). This is a way to express the geometric constraints

. . 9
associated to a set of three views taken by the same cameral'?,

5.2 An indirect, monocular approach

Figure 15: Displacement of a binocular stereo rig.

The principle This approach only requires to compute the displacement Dy of the first
camera and the displacement D, of the second camera, in the coordinate systems of the first
and of the second cameras, respectively. The difficulty arises from the fact that D; and Dy are
then known in different coordinates systems, as shown in figure 15, in which the superscripts ¢
and f refer to initial and final positions. To cope with this problem, the idea of our method is
to use the commutativity of the following diagram:

Cif R C'Zf
D; 1 7 Dq
¢ 2 o

In this diagram, the relative displacement from the first to the second camera does not change
between the initial and the final position of the stereo rig, since they are rigidly attached to
each other. We can thus write the matrix equation:

DD, = D,D (47)

where D is the 4 x 4 unknown matrix of the displacement from the first camera to the second
camera, Dy, D5 are the 4 x 4 displacement matrices of the first and of the second cameras, in
their initial respective coordinate systems. Equation (47) can be decomposed in the following
two matrix equations:

RR; = R:R (48)

2This idea is considerably developped in [35].
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(I — Rg)t = /Lgtg — ,lLlRt-l (49)

where 17 and pus are unknown scale factors associated to Dy and Ds, respectively. The first
equation has been much studied in the framework of hand-eye calibration [4] [44], [52], [3]. Thus
the reader is refered to those references for a more detailed analysis of unicity and sensitivity to
noise. We just indicate bellow how, if we perform two displacements of the sterco rig, we can
solve the two resulting matrix equations (48) to compute R, and point out to some constraints
which arise from the displacement of a stereo rig. The solution of the two vector equations (49)
to compute t up to a scale factor is less classical, since it involves working with translation
vectors which are defined only up to a scale factor, as in the previous case of the trinocular
stereo rig which it generalizes.

There is an important advantage of this method over the one which consists in computing
directly the displacement from matches between the first and the second camera: since we work
in each camera independently, we need only monocular matches which are more easy to obtain,
since an arbitrary number of intermediate movements can be performed, and a token tracking
procedure used. On the opposite, finding directly stereo matches can be difficult if the baseline
of the stereo rig is large, since at this stage the stereo rig is not yet calibrated.

Recovering the rotation To solve equation (48), we use a quaternion representation of
the rotations [40]

qr = ("":v)
qr, = (Sltvl)
ar, = (s2.V2)

Writing equation (48) with this representation yields:
9qRrR *9R, — 4R, *qr =0 (50)
where % indicates the quaternion product. This gives the two equations:

3(81 — 82) = v.(v1 — va) (51)
=0

."‘(Vl — V2) =+ (51 — 52)V+V X (Vl +V2)

Let us write: v = avy + vy + v(vy X v2). After some algebra using the properties of the
quaternions, we obtain:

a=0 , s = s (52)
and then:
s = *y(vf +Vvi.Va)
v+ vo|*
vy vl 4 7 v vl Yl (53)

Since there are two unknowns « and vy, t his last equation determines a one-parameter family
of rotations, which are parameterized by an ellipse lying in the plane (vq 4+ vo, vy X vg). It has
been shown ([4], an alternative proof is in [31]) that a necessary and suflicient condition for a
unique solution is that two displacements with non-parallel rotation axis be performed. Let us
point out to a binocular constraint which is present in our case:

RR; = R,R
RR, = R,R
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From these relations, we see that we have also:
R(R;R]) = (R:R))R

Using the constraint (52) on the last equation yields: sys] —uy.uj = sysh —up.uf. Since s; = s7
and s} = s}, we finally obtain the equation:

u;.uj = uy.uf (54)

For practical purposes, instead of using (53), we can obtain, as in [4], a linear solution. We
can notice that (50) has the same form as (37). Thus there exists a 4 x 4 matrix G, such that:

dr X dr, — 4R, X qr = Gagr (55)

G is given by a formula similar to (37). A closed form solution can be obtained with two
equations (55) obtained by two displacements of the stereo rig. If we use more displacements,
we can improve the results by using a linear least-squares procedure.

Recovering the direction of the translation We suppose that we have computed R,
as previously described. A geometrical analysis shows that the matrix I — Ry maps all vectors
in the plane perpendicular to the axis uy of the rotation Ry. Thus, starting from relation (49),
we can write:

112.([142132 — /,LlRtl) =0

This allows us to determine the ratio @ = p; /p2. It is then possible to recover the direction t_
of the component of t orthogonal to u,. yielding the constraint:

te (t_,u) (56)

If a second movement, for which the axzis uy of the rotation is different, is performed, we
can compute similarly a direction t’_. Combining the two constraints (56), and the same with
primes, we obtain t up to a scale factor by:

t=A(t- xu) x (t° x uy) (57)

Note that if we perform more than two displacements, the direction of t can be easily recovered by
using a linear least-squares procedure based on equation (57). This completes the computation
of the relative position of the two cameras, up to a scale factor.

6 Experimental results

6.1 An example of calibration of a binocular stereo rig

Self-calibration of a camera We first show the results of the monocular self-calibration,
using three images taken by the left camera at different positions of the stereo rig. Results are
quite similar for the second camera. In order to make comparisons possible with the standard
calibration method, we have performed displacements in such a way that the calibration grid
remains always visible in the left camera.

We use between 20 and 30 corners, which are extracted with a sub-pixel accuracy, semi-
automatically, by the program of T. Blaszka and R. Deriche [7]. Correspondence is, in this
experiment, performed manually, and followed by an automatic elimination of false matches.
It should be noted that the corresponding points between pairs of images are different, that
is, points need not be seen in the three views. Figure 16 shows the points of interest matched
between image 1 and image 2. The standard calibration is performed on each image, using the
algorithm of Robert [41], which is a much improved version of the linear method of Faugeras and
Toscani [15]. From the projection matrices obtained by this algorithm, the three fundamental
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matrices Fi5. Fa3, Fi3 are computed and used as a reference for the comparisons with our
algorithm which computes the fundamental matrices from the point matches. The resulting
epipoles are shown in table 6. It can be seen that the estimation is quite precise. We have given
two values of the RMS error, which represents the average distance of corresponding points to
epipolar lines. The first one (points) is computed over the detected points which were used to
estimate the fundamental matrices. The low value (one third of a pixel) confirms the validity
of our linear distortion-free model, as well as the accuracy of the corner detection process. The
second value of the RMS (grid) is computed over the 128 corners of the little white squares on
the calibration grid, which were used for model-based calibration. Since these points were not
used at all to estimate the fundamental matrices, this provides appropriate control values. As
expected, the RMS with the control points is sometimes higher than the RMS with the data
points, but the value remains under one pixel. Some epipolar lines obtained with points that are
seen in the three images are shown figure 17 to illustrate the quality of the estimated epipolar
geometry.

The cameras intrinsic parameters are then computed from the fundamental matrices. We
show in table 7 the intrinsic parameters obtained by the standard calibration method using each
of the three images, and the results of our method, with the polynomial method (Section 3.2)
and the iterative method (Section 3.3) used to compute all the parameters, or just the scale
factors, starting from the previous value. It can be noted that no initial guess is required at
all for the general method. The scale factors are determined with a good accuracy, however,
this is not the case for the coordinates of the principal point. Thus the best is to assume that
it is at the center of the image. We have then compared in the table 8 the camera motion
obtained directly from the projection matrices given by the classic calibration procedure, and
the estimation by performing the decomposition of the fundamental matrices already obtained,
and using the camera parameters obtained by the self-calibration method. The table shows the
relative error on the rotation angle a, the angular error 6, on the rotation axis and 6; on the
direction of translation. It can be seen that the estimation is accurate.

Figure 16: A pair of images with the detected corners superimposed.

Extrinsic parameters computation Once the self-calibration of each camera has been
achieved, we have performed two other displacements of the stereo rig. We have not used
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from the grid estimated RMS
€ €y el e; € €y el (i; points  grid
1-2 | -222.4  181.0 -466.9  167.5 | -200.0  185.8 -447.5 170.1 0.36  0.76
2-3 | 2226.9 -1065.1 -2817.9 1646.6 | 2708.5 -1380.1 -2099.6 13155 | 0.31 0.31
1-3 | 654.4 -288.8 1114.7 -715.6 | 680.2  -321.7 12309 -842.2 | 0.26 0.54

Table 6: Results of the fundamental matrix estimation in the left camera.

Figure 17: A triplet of images with some estimated epipolar lines superimposed.

method ay, Oy U Vo 00— %
grid, image 1 657.071 1003.55 244.227 256.617 -2.05¢-06
grid, image 2 664.975 1015.2  232.61 257.701 -T7.47e-07
grid, image 3 639.749 980.185 252.174 249.585 -2.60e-06
Kruppa polynomial 639.405 982.903 258.980 341.013 -6.11e-03
Kruppa iterative 640.12  936.08 206.17  284.95 -0.07
Kruppa iterative (center) | 681.28  985.69 255 255 0

Table 7: Results of the

intrinsic parameters estimation in the left camera.

motion T Ty T, te ty t, A{f 0, 0;
1-2 grid | 0.01175 -0.2117 -0.01785 -0.7290 -0.06831 0.6809

estimated | 0.01843 -0.2110 -0.01961 -0.7239 -0.06102 0.6871 | 0.0005 1.8 0.62
2-3 grid | 0.1900  0.4526 0.1211  -0.9395  0.2779  0.1999

estimated | 0.1915  0.4682 0.1279  -0.9209 0.2896  0.2608 | 0.032 0.61 3.7
1-3 grid | 0.2007  0.25633  0.07876  0.6976  -0.5041  0.5090

estimated | 0.01306 -0.2145 -0.01405 -0.7371 -0.05872 0.6731 0.10 0.98 3.0

Table 8: Results of the camera motion

estimation in the left camera (first sequence).
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1-2 | 7, =[-0.00012, 0.3130, 0.00773]7  #, — [0.1237, -0.0209, 0.9920]” | a; — .3131
ro —| 00554, .31196,-.01219 [T ¢, — [0.2953, 0.0160 0.9552]7 | oy — .3122
2-3 | 7} [-0.0334, -0.1098, -0.143|" th — [-0.124, 0.5974, 0.7922]7 | o}  .1833
rh = -0.0540, -0.117, -0.133|7  #, = |-0.01089, 0.02439,0.9996|” | o, = .1853
1-3 | 7, = [-0.00224, 0.2054, -0.1307|]7  #; — [-0.1882, 0.9809, 0.0476]T | «; — .2435
ry = [-0.06175, 0.198, -0.1385|7  #, — [0.3423, 0.1487.0.9277|7 | c, — .2494

Table 9: Results of the camera motion estimation in the left and right camera. (second sequence).

the three previous displacements because they yield computations that are less stable for the
method we want to illustrate now: the computation of the relative displacement between the
two cameras of the rig using only monocular matches, the problem being the little difference
of motion between the two cameras of the rig. We have performed small displacements which
maximize this difference. The six images are shown in figure 18 Since only a small part of the
calibration grid is seen, we cannot directly check the results of the determination of camera
motion shown in the table 9. However, we verify the consistency of these results thanks to two
families of constraints: the one arising from the fact that the two cameras of the rig are rigidly
attached, and the one arising from the fact that the third displacement is a composition of the
first two displacements, since only three images are used. The binocular constraints are that
the angles of rotations of the two cameras are equal for a given displacement of the rig (52),
which can be checked in the last column of table 9 and the relation (54), whose residual values
are here —.00943, .01950, and —.05394. The monocular constraints are obtained from the fact
that the composition of the two first motions gives the third one. We obtain for the rotations,
using (43):
r, = [-.01125..2027, —.1389]T 7, = [-.02648,.1936, —.1518]T

which is close to the values actually computed shown in table 9: the relative error on the angles
is 1% and 0.8%, and the angle between the axes is 8.7° and 2.9°. The triple product (44) involves
also the direction of translations. The value in the left camera is —.0192, and in the second
camera —.002. Thus we have checked that all the constraints are well satisfied.

We have then computed the relative displacement between the two cameras of the rig, using
different methods:

e The classical calibration method. The reference position is taken in such a way that the
grids cover a large part of each image. It can be noted that when using other positions
(the first two positions used for self-calibration, where the grids can be seen entirely), the
results vary significantly.

e The direct method using stereo matches. It yields very stable results. Adding correspon-
dences through images improves rotation accuracy.

e The indirect method, using the three pairs of motions, gives results comparable to those
obtained with images where calibration grids do not "fill the image frame".

The results are in table 10, which shows the rotation vector and the normalized translation
vector, as well as the relative error on the rotation angle and the angular error and the rotation
axis and translation direction. Thus, good results can be obtained if stereo correspondences are
available, and reasonable results are obtained by the monocular method. Precision can be easily
improved by using more images than the minimal number used here.

6.2 Varying the focal length

We have applied the method to a camera with a variable focal length. The results are shown in
table 11. It allows us to notice that the best results are obtained for short focal lengths, which
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Figure 18: Three pairs of stereo images (arranged for cross-viewing).



method Ty Ty T, ty Ly t. % 0, 0,
GRID (ref.) -0.04097 0.1842 0.05561 0.9992  0.03770 -0.00889

GRID (1) -0.04015 0.2285 0.05573 0.9970 0.04541 0.0613 0.21 3.8 4.0
GRID (2) -0.03595  0.2042 0.05611 0.9976 0.04234 0.05303 | 0.09 2.7 3.5

STEREO (1) -0.03383  0.2205 0.05298 0.9992 0.03879 -0.00402 | 0.16 4.7 0.28
STEREO (2) -0.03014 0.2025 0.05411 0.9992 0.03902 -0.00157 | 0.07 4.2 (.42
STEREO (1 + 2) | -0.04307 0.1895 0.05411 0.9991 0.03804 -0.01655 | 0.025 0.9 0.44

MONO -.04915 2383  .05322 9987 -.002223 -.04902 | 0.26 4.1 3.2

Table 10: Results of the estimation of the relative displacement between the two cameras.

focal | method Qy Oty ug v 0— 3 Z—"
9 GRID 481.31 711.54 248.57  260.97 10~7 .6764
SELFCALIB | 503.49 760.71 250.24  282.67 .6618
12 | GRID 642.45 950.37 248.30  263.31 —5.1077 | .6759
SELFCALIB | 636.12 921.36 201.52  338.89 .6904
20 | GRID 1036.38  1539.6 252.43  272.53 7.10°8 [ .6731
SELFCALIB | 1208.83 1838.48 251.93  200.58 .6575
30 | GRID 1573.20 2330.953 207.98 210.35 41077 | .6749
SELFCALIB | 2047.61 3063.94 249.678 198.463 .6682

Table 11: Parameters obtained with a zoom camera

yield large fields of views. Although the focal length is overestimated by the method for large
values, we can notice that the computed aspect ratio is quite consistent over the whole focal
range.

6.3 Reconstructions from a triplet of uncalibrated images taken by a
camera

We now show examples of reconstruction using structure from from motion with three uncali-
brated views. The approach is to use the global minimization approach presented in Section 4.3,
with the variant presented Section 5.1 to account for trinocular constraints.

A qualitative experiment The first set of images is used to illustrate the feasability of
the method in a fairly standard indoor environment, such as it appears in the three views of
figure 19. First, self-calibration is performed using the same method as in the previous examples.
Then edge detection is performed, and the edge chains are approximated by B-splines, which are
provided as input to the trinocular stereovision algorithm of Luc Robert [42, 41|. The matching
phase of this algorithm uses only the epipolar geometry obtained from the fundamental matrices
Fi5, Fi3, and F23, which are computed from the point correspondences. The 3D reconstruction
phase requires in addition three projection matrices which relate the three image coordinate
systems to a common world coordinate system. They are obtained by taking as the world
coordinate system, the first camera coordinate system, and by finding the two displacements
Dy,. Dos, as well as the ratio of the norms of t12 and to3 (f()r which the computation of D3 is
needed), as explained in section 5.1. Results of the reconstruction are shown in figure 20 as a
stereogram which shows that planar structures and angles are quite well captured. The figure 21
shows two rotated views of the reconstructed scene, one from the side, the other from the top.
It can be seen on these views that the estimated distances are also metrically plausible.
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Figure 19: The triplet of images of the indoor scene, with edge chains superimposed.

Figure 20: Reconstruction of the indoor scene from the uncalibrated triplet (stereogram for cross-
viewing).
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Figure 21: Two rotated views of the indoor scene.

A quantitative experiment We have further tested the precision of reconstruction of
our algorithm using triplets of images of a standard photogrammetric calibration pattern which
were communicated to us for testing by the commercial photogrammetry company CHROMA,
of Marseille, France. In contrast with the previous images, coordinates of 3D reference points
are available, which allows us to assess quantitatively the error in reconstruction from the
uncalibrated images. The triplet used in this experiment is shown in figure 22. The points of
interest are the light dots and have been located and matched manually'®. Note that the scale
factors found «a,, = 1859.47, a, = 2520.79 correspond to a rather long focal length, which is
not very favorable, and that among the three motions between pairs of images, the motion 2-3,
whose translation vector was found to be t23 = (—1.186,0.6623, —0.0857)7, is nearly parallel
to the image plane, a defavorable configuration, as shown in [31, 33]. However, the epipolar
geometry found from the three projection matrices obtained by self-calibration is fairly coherent,
as illustrated in figure 23, which shows a zoom with epipolar lines of one the point of interest.
We have then performed a 3D trinocular reconstruction from the matched points, using our
computed projection matrices as input for a the classical reconstruction algorithm of R. Vaillant
and R. Deriche [8]. The 3D points are obtained in the coordinate system associated with one of
the cameras, since we can reconstruct only up a similarity with the self-calibration technique.
Thus in order to compare the reconstruction with the reference data, we have computed the
best similarity which relates the two sets of 3D points, using an algorithm of Z. Zhang. After
applying this similarity to the initial reconstruction, the final average error in 3D space with
this sequence is 2 millimeters!*. A sample of coordinates of reconstructed points are shown in
table 12, units being in millimeters. It can be shown that the precision is about 1 part in 50.

7 Conclusion

We have presented a general framework to perform the self-calibration of systems of one, or
several cameras. The basic idea is that the only information which is needed to perform cali-
bration are point correspondences. This is contrast with all standard calibration methods. As a
side effect of the calibration procedure, we can also estimate the relative displacements between

13 A snake-based ellipse localization program due to B. Bascle, has also been tried.
4 This is typical, more precise results have been sometimes achieved.
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Reference points

Reconstructed points

X Y V/ X Y V/
-56.3 0.38 90.1 | -55.5 -2.28 89.1
-69.7 0.33 110.1 | -69.6 -3.02 108.3
-41.8 30.0 40.1 | -40.9 29.7 40.6
-28.2 498 90.0 | -26.5 49.3 89.2
-70.0 30.0 0.035| -69.8 30.4 3.4
-112.0 70.2 90.1 | -113.8 70.5 88.1
-69.5 89.7 90.0 | -69.6 90.8 88.9

Table 12: Comparison of the 3D reconstruction from self-calibration with reference points.

Figure 23: Zoom on the photogrammetric triplet, showing corresponding epipolar lines.



the cameras and the structure of the scene. The algorithms which arise from this study are the
most general possible, in the sense that they do not require:

e any model of the observed objects, or any 3D coordinates,

e any knowledge of the camera motion, which can be entirely general, with the exception of
a few degenerate cases, and can be computed as a byproduct of the method,

e any initial guess about the values of the camera parameters, or any restrictive model of
these parameters, which describe the most general projective camera model.

Thus, of the four pieces of information used in 3D vision (calibration, motion, structure, corre-
spondences), our method needs only one input and produces three outputs, whereas the other
algorithms need at least two inputs or produce at most two outputs, as shown in the table below:

. Camera rigid 3D
Paradigm Correspondences .
parameters displacement Structure
Structure from Motion input input output output
Stereovision input output input output
Model-based calibration output input not used input
Calibration from motion output input input not used

The problem of on-line calibration is now becoming very important in the framework of active
vision, where optical parameters such as focus, aperture, zoom, and vergence are constantly
changing, making the use of classic calibration techniques impossible. Thus a number of re-
searchers have recently investigated self-calibration techniques. However, all of them have put
more limitations on their methods than we did, by adding supplementary constraints, such
as an initial knowledge of camera parameters which are then only updated [6], or restriction
on the camera motions |9, 2, 27, 54]. When the camera motion is exactly known in some
reference frame, then these methods should be rather called "calibration from motion" than
self-calibration, where motion and calibration are estimated. However, one of the most reason-
able restriction seems to be a partial control of the motion, which may be performed by a robotic
head. In this context, the most general work is that of Viéville |54] where the only additional
assumption is the fact that the motion is a fixed-axis rotation, something well-suited to robotics
heads. More precise and robust results are then obtained.

Although we have shown using experiments with real images that our self-calibration method
can be accurate enough to provide useful 3D metric descriptions, and that the results are often
of a similar quality than the ones obtained by a traditional method, it must be admitted that the
method has presently its own constraints: not all types of displacements yield stable results, and,
as in all calibration procedures, precise image points localisation and reliable correspondences
are necessary.

Natural extensions of this work are to investigate the geometry of a system of three cameras,
since our formulation does not take into account trinocular constraints at the projective level, but
only at the Euclidean level (section 5). Using a third view should also enable to use lines, which
are usually more stable primitive than points. It can be expected that the resulting algorithm
will have nicer robustness properties. Another idea, which is important in the framework of
active vision, is to study the case of parameters which are allowed to change over time. The
framework that has been laid out in this paper could prove to be a useful starting point for
these studies which would hopefully result in more truly autonomous vision systems.
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A A few proofs of equivalence

A.1 Trivedi equations and Huang-Faugeras constraints

We now show that the three Trivedi equations are equivalent to the Huang and Faugeras condi-
tions. Let first suppose that we have (14). Then follows immediately det(EET) = 0, and thus
the first condition det(E) = 0 is satisfied. Adding T12, T15 and Tas, yields :

4( 3+ 5%+ 533) + 83 4+ 83, + S35 — 2(S11 892 + S22833 + S33511) =0

Since the matrix S is symmetrical, the first term can be replaced by: 4(S12.521 +513.531+523532),
and a simple calculus shows that it is identical to the second Huang-Faugeras condition:

trace?(S) — 2trace(S?) =0

Let then suppose that the Huang-Faugeras conditions are satisfied. They are equivalent to the
fact that the matrix E has a zero singular value and two non-zero equal singular values o. By
definition, there exists an orthogonal matrix ® such as:

0 0 0]
S:EET=®{0 o2 0 | eT
0 0 J2J

This matrix equality can be expanded as:
S =2 (0,505 + 0,30,3)1<; j<3
Since ® is orthogonal:

9,50, 9. =4 ~OuOp ifiF]

9i20;2 + 0:20js = { 102 ifi=j

The diagonal element 1 — ©%; (resp. 1 — 03, 1 — ©3%,) can be rewritten ©3; + ©3; (resp.
03, + 03,. 03, + 02,), which shows that S has exactely the form (14).

A.2 Huang-Faugeras constraints and Kruppa equations

Let us make a change of retinal coordinate system in each of the two retinal planes, so that
the new fundamental matrix is diagonalised. One way to see that it can always be done is to
use the singular value decomposition : there exists two orthogonal matrices ® and A such that
F = AA®T. If we use matrix ® to change retinal coordinates in the first retina and matrix
A to change retinal coordinates in the second retina, the new intrinsic parameters matrices are
A =A(® and A’ = Ay A in the first and second retina, respectively. If the epipolar constraint
in normalized coordinates m and m’ was:

mTA;TFA; 'm =0
with the new coordinate systems, we have:
pITAlflTAA—lp =0

Thus it is possible, provided we allow the two cameras to be different, to consider that F is in
diagonal form:
r| 1

Lo o o]

(58)

o O >
o O
jen Rl en il en]
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where A # 0 and g # 0 since we know that a fundamental matrix must be of rank two. Using (58)

we obtain easily the epipoles e = e’ = (0,0,1)7 and the homography h : 7 —%T, and then,

after some algebra, the Kruppa equations:

)\(Sg(SéS + /1,5135:’3 = 0 (El)
)\(523(51,3 + /1,53(513 = (Eg)
/\25235"23 - M2513513 =0 (E3)

with, 17, 1¥, 1T being the row vectors of A (similar primed notations are used for the second
retina):

63 = <11-,12>
b3 = —|L|
b3 = —|L|? (59)

Note that although we use for convenience the three Kruppa equations, only two of them are
independent, since we have for instance the relation:

)\(523E1 — /1,513E2 = (53E3 (60)

Let now express the condition f(E) = 0. Since: E = AITFA, some algebra (done partially
using the symbolic computation program MAPLE), leads to:

— 5 ((\025055 = 1781381)" + 2An(Ab3855 + pd1585) (AS23bh + pd3d1s))

f(E)

1
—§(E§ + 2)\uE Ey)

It is then clear that if the Kruppa equations are satisfied, then f(E) = 0. Let now prove the
inverse implication.
In the case where §5 # 0, the previous equation can be rewritten, using (60):

(MS23Eqy — 1613 E2)? + 2 By E26%2 = 0 (61)

Thus:
N2, B2 + 263, B2 = 2ApuEy Ea(613693 — 63) (62)

According to the definitions (59) of 83, 613, 623, the Schwartz inequality implies that §13623 — (532,
is superior or equal to zero. If it is zero, one can obtain from (62) that 6251 = é13F2 = 0.
Since 613623 = 6% # 0, it follows £ = Ey = 0. If it is strictely positive, then 2ApFE; Es > 0.
The equation (61) is the sum of two positive terms, thus they have to be simultaneously zero,
thus F1Ey =0 and E5 = 0.

The only special case which remains is 63 = 0. The Kruppa equations are then in the simple
form:

[14513(53 = )\(323(‘):’; = /\25236é3 - #2513533 =0

which is equivalent to:

8 =0 85 #0
A2623(Sé3 — [1,26136;3 =0 o (513 = (523 =10

and to:
f(E) = 2A2,U,2($13(523(532 + ()\2(523(5:;3 - ,M2($13($13)2 =0
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B Independence of Kruppa equations from three images

The two first displacements are:

10 0 1

R,=|00 —1 t =
01 0 1
0 1 0] 2

Ry=| -1 0 0 to=| 0
0 0 1| -1

The displacement obtained by composition of Dy and D, in the coordinate system of the first
camera is:

[ 0 1 0 [ 3 -|
R3:R1R22 0 0 -1 ththg +t1: 3
[ -1 0 0 | [ 1 J
If we take as intrinsic parameter matrix A the identity matrix, the fundamental matrices are

identical to the essential matrices. By chosing the normalization 615 = 1, the six Kruppa
equations obtained are:

B = 36, —2+460830615+9654+46,85 — 182615 +262 +128; 60 +36; 815 +2815°
Bl = 3025 —38150605 +86; 005 + 146,
— 85015 — 465 —46, 85 — 485815 — 05 +46165 — 515" + 61 615
Ey = 263009 +1663 — 80503 + 465 023
41662 — 16657 + 46, 615 +166, — 168;° 4+ 285 6,5 — 86, b3
E, = 8032 + 46829 — 469609 — 6157 — 46819 +46; 614
Es = 6603 +6083+ 18895085 + 1285815 + 36852 + 18825 62 + 3682 515 + 3682 85
— 0602567 — 12067 679 + 1869 — 3605 02 —66132 — 186, —1—36512
E, = 9695” + 9025 015 + 18825 85 4 825 — 9815 + 285 + 60625 09 + 662 815 + 1284 65

— 8197 — 481613 — 9+ 128, +1268,2

A solution of the system of equations Ey, Ej, F>, E} obtained from the displacements Dy and
D5 is:

1
(51:0 (52:—5 (53:1 (513:—4 623:0

Substituting these values into the equations obtained from D3 yields: E3 = —27, Ef = 19, thus
we have verified that these equations are independant from the previous ones.
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