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ABSTRACT

Coplanar camera calibration is the process of
determining the extrinsic and intrinsic parameters of
camera, where a set of image and two-dimensional
(2D) control points are known. This paper presents a
simple and efficient technique to compute the
calibration parameters for coplanar calibration.
Computing of the calibration parameters is directly
performed on computer image array in the frame
buffer. Thereby, the image center can simultaneously
computed together with other parameters. However,
the parameters can be solved using available three
orthogonality constraints, where the scale factor is
assumed as one and the lens distortion is not
considered. The proposed algorithm is tested with
noise-free synthetic image and synthetic image
corrupted with known noise. The results show that the
proposed technique is accurate and robust to noise.

1. INTRODUCTION

Camera calibration is a necessary step in computer
vision and robot vision for three-dimensional (3D)
object measurement. It is the process to determine the
camera intrinsic parameters such as focal length, scale
factor, image center, lens distortion, and camera
extrinsic parameters such as the 3D position and the
orientation of camera which relate to certain world
coordinate system.
   According to the geometry of calibration pattern, 
there are two types of calibration, non-coplanar and 
coplanar camera calibrations. The former is calibrated 
by observing the control points of calibration pattern 
in the known 3D space with good precision. The latter 
is performed by observing the control points lying on 
2D plane. Most of the camera calibration works have 
emphasized on non-coplanar calibration rather than 
coplanar case because non-coplanar calibration is 
easy and the number of usable orthogonality 
constraints is sufficient. However, there is several 
industrial and military applications required coplanar 
calibration.
   Tsai [1] designed radial alignment constraint (RAC) 
for camera calibration in both coplanar and non-

coplanar calibrations. Most parameters are computed 
in closed form by linear method, while some intrinsic 
parameters such as camera focal length, depth 
component of translation vector, and radial distortion 
coefficients are computed using standard nonlinear 
minimization scheme (steepest descent). However, 
the computed parameters use relationship between the 
control points of the world coordinate and their 
corresponding image points on image plane, where 
the image center and scale factor are assumed 
previously known. However, this is not a flexible 
method to compute and obtain the accurate 
parameters. Therefore, Lenz and Tsai [2] presented 
the nonlinear method for solving image center and 
scale factor by minimizing the RAC residual error, 
which the accuracy of the calibration parameters 
influenced from image center and scale factor is 
increased.
   Chatterjee et al [3] proposed algorithms for the 
coplanar camera calibration which calibration 
parameters are computed by both linear and nonlinear 
optimization methods. In linear case, the non-
coplanar algorithms of Ganapathy [4], Grosky and 
Tamiburino [5], and Chatterjee et al [6] are extended 
to the coplanar case. From these algorithms, some of 
the calculated scale factors and the entire image 
center are not simultaneously computed. Thereby, the 
computed parameters are lack of accuracy. This 
caused the error of the extrinsic parameters and 3D 
measurement
   In this proposed technique, the computing of 
calibration parameters is directly performed on the 
computer image array in frame buffer, and the image 
center is simultaneously computed with other 
parameters using linear method by assuming that the 
scale factor is one and lens distortion is not 
considered. This proposed technique aims to develop 
a simple and efficient algorithm for coplanar case to 
obtain more accurate results than those of Tsai 
method and Grosky method extended by Chatterjee et 
al. For lens distortion correction, this proposed 
technique to nonlinear optimization method using the 
computed parameters from linear method as initial set 
could also be extended.
   In Section 2, the camera model that represents the
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Fig. 1 Mapping control points to image plane

relationship between computer image coordinate and 
2D control points will be described. In Sections 3, the 
camera calibration using linear method is solved. 
Finally, the experimental results with synthetic image 
and the comparison of the results to those of Tsai 
method and Grosky method are shown in Section 4.

2. CAMERA MODEL

Calibration parameters consist of extrinsic and
intrinsic parameters. The extrinsic parameters consist
of 3x3 rotation matrix R, which defines camera
orientation, and 3x1 translation vector t, which
defines 3D position of camera center. The intrinsic
parameters consist of the effective focal length (f) of
camera, center of image array (Cx, Cy), aspect ratio or
scale factor (s) of the image array, and lens distortion.
   Fig.1 illustrates the basic geometry of camera 
model, the origin of world coordinate system (Ow)
lying on a calibration pattern is assumed. Thereby, the 
control points of calibration pattern lie on 2D plane 
(Xw, Yw). 3D camera coordinate system (Xc, Yc, Zc)
with optical center at Oc point and Zc axis is the same 
as the optical axis. Transformation from the control 
points of 2D plane to camera coordinate system for 
coplanar calibration case    (Zw = 0) can be shown as

1
w

w

c

c

c

Y
X

tR
Z
Y
X

(1)

where R = 

87

54

21

rr
rr
rr

is 3x2 rotation matrix that defines camera orientation. 
t is 3x1 translation vector that defines the position of 
camera center.
   2D image plane is placed behind the focal plane 
with  (i, j) axes aligned with (Xc, Yc) respectively. 

The effective focal length (f) is the distance between 
the image plane and the optical center. Considering 
the pinhole camera model, the relationship between 
the control points of the camera coordinate and their 
corresponding points on image plane is given by
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or to be expressed in the matrix form as
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where (Xu, Yu) are ideal undistorted image points on 
image plane and is a non-zero scale factor.

   Transformation from image plane to computer 
image array in the form of row and column in the 
frame buffer can be expressed by

uX  = xfi CXsn 1

uY  = yfj CYn  (4)

where (Xf, Yf) is an image coordinate (pixel) in the 
frame buffer. (ni, nj) is the distance between sensors in i 
and j directions, previously known from manufacturing’s 
data. Here, the relationship of image coordinates in the 
frame buffer and image points on the image plane in 
the matrix form can be expressed as
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   Finally, the relationship between the control points 
in 2D plane and their corresponding coordinates in 
the frame buffer can be written by
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   However, the results of imperfections in the design 
and assembly of lens and the projection of the control 
points from 2D plane to image plane are not accurate. 
Types of lens distortions commonly seen are radial 
and tangential. Let (Xd, Yd) be the actual distorted 
image coordinate on image plane, which causes from 
the lens distortion. The ideal undistorted image 
coordinate (Xu, Yu) related to the actual distorted 
image coordinate can be expressed by

dddddddddu YXpXrprXkrXkXX 2
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where k1, k2 are first and second order of radial
distortion coefficients respectively. p1 and p2 are

tangential distortion coefficients, and 222
ddd YXr .

3. SOLVING CAMERA CALIBRATION

This section describes the computing of calibration 
parameters directly performed on image coordinate in 
frame buffer by using linear method. The image center 
can be computed together with other parameters. Rigid 
body transformation from world coordinate to frame 
buffer in equation (6) can be rewritten in form of two 
collinearity equations:
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   Since equation (8) has a nonlinear characteristic. 
Therefore, to easily obtain the estimate parameters by 
linear method, let assume that the number of row and 
column of the image center is equal (Cx = Cy), s=1, 
and lens distortion is ignored or corrected in advance.
   The parameters to be calibrated consist of rotation 
matrix R with incomplete entries, translation vector t,
focal length f, and image center Cx, Cy. Then equation 
(8) can be expressed in matrix form as

cAb      (9)
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 With n control points, overdetermined system of 
linear equations can be established and solved for 
unknown vector b in linear least square system

cAbmin      (10)

   When the solution of vector b is obtained, the 
rotation matrix R is rearranged or expressed in the 
form of
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where 87654321 bbbbbbbbbT , and 
f
t

A 3 .

   Then the orthogonality constraints of rotation 
matrix are used and the calibration parameters can be 
solved as follows:
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where 6354 bbbba , 5261 bbbbb , bac ,

41bbe 32bb , with negative or positive sign if the

origin of world coordinate system Ow is in front or
behind the camera. The remaining parameters can be
solved as follows:

511 bCbAr x , )( 622 bCbAr x , aAtr 33 ,
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357 tbr , 368 tbr , )(2
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4. EXPERIMENTAL RESULTS

In order to obtain the experimental results, the 
synthetic data is generated, with a known set of 
extrinsic and intrinsic parameters. The 8x7 grid of 
control points at 30 mm. distance to simulate 2D 
calibration pattern is produced, that is related to the 
certain world coordinate system. Let assume that the 
image center (Cx, Cy) in frame buffer is at (256, 256) 
for 512x512 image size; scale factor s=1; focal length 
f=55 mm; both conversion parameter ni=nj=0.0367, 
camera center position is (-198.9551, -79.7462, -
943.0575) in mm., rotation parameter in form of 
Euler angle ,  and  are 0, 0.0873, and 0.0873 

rad., respectively. With the given control points and 
camera parameters, the image coordinates Xf and Yf

in frame buffer are obtained from equation (8).
   The proposed technique is experimented on two sets 
of data: 1) noise-free synthetic data and 2) synthetic 
data corrupted with known noise. In noise-free 
synthetic data case, the results of the calibration 
parameters computed by the proposed technique are 
compared the result with those obtained from Tsai 
method and Grosky method, and shown in Table 1. 
For the Tsai method, all parameters are only 
computed by linear least square method, so the both 
results can be directly compared. In another case, 
independent quantization noise with uniform 
distribution is added on the interval (-0.5, 0.5) pixel to 
the image coordinates. The 50 test data with different 
quantization noise for test algorithms are generated, 
and the calibration parameters from 50 data sets are 
computed by the proposed technique, Tsai method, 
and Grosky method to obtain 50 sets of each 
parameter.
   Finally, their mean and standard deviation and 
relative error of each parameter can be computed 
from
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Relative error = 
 valuetrue

  valuecomputed- valuetrue
(17)

where the mean of 50 sets parameters is used.
   The result of synthetic data corrupted with known 
noise is given in table 2.
   The experimental results with noise-free synthetic 
data indicate that parameters computed by the 
proposed technique are more accurate than those 
obtained from Tsai method and Grosky method. 
Moreover, the image center can be computed. 
Comparing those methods to the proposed technique 
for solving calibration parameters with synthetic data 
corrupted with known noise, the Grosky method is 
more sensitive to noise. The Tsai method is less 
sensitive to noise compared to Grosky method, but the 
depth component of translation vector and focal length 
are more varying than other parameters. Therefore, 
Tsai used nonlinear minimization scheme in computing 
of t3 and f in order to get the optimal solution. The 
proposed technique is generally more accurate and 
more robust to noise than other methods. Image center 
is rather accurate, although the parameters t1 and t2 of 
translation vector are more varying to noise.

5. CONCLUSION

In this paper, the simple and efficient technique in 
computing the calibration parameters of coplanar 
calibration directly performed on computer image 
array is presented. The image center is simultaneously 
computed with other parameters. The scale factor is 
set to one and lens distortion is ignored. The 
experimental results show that the parameters 
computed by the proposed technique are more 
accurate and robust to noise than those obtained from 
Tsai method and Grosky method. It is possible to use 
these parameters as an initial set for optimization 
scheme, where the number of iteration can be reduced 
and the optimal solution can be quickly reached.
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Table 1 Calibration parameter computed

The proposed
 method

Tsai method Grosky method

r1 0.99306 0.99306 0.99307
r2 0.086857 0.086857 0.08658
r3 -0.079284 -0.07284 -0.079232
r4 -0.079284 -0.079284 -0.079285
r5 0.9924 0.9924 0.9924
r6 0.094128 0.094128 0.094066
r7 0.086857 0.086857 0.086799
r8 -0.087189 -0.087189 -0.087131
r9 0.9924 0.9924 0.99241
t1 -198.9551 -198.9551 -198.9561
t2 -79.7462 -79.7462 -79.7466
t3 -943.0575 -943.0599 -942.4282
f 55.0000 55.0001 54.9630
s 1.0000
Cx 256.0000
Cy 256.0000

Table 2 Relative error and standard deviation of
parameter estimates for synthetic data

The proposed
technique

Tsai method Grosky method

r1 8.4587E-05
(0.000412)

0.000361
(0.001997)

0.003402
(0.023137)

r2 0.00028783
(0.000579)

0.00312
(0.0009)

0.055873
(0.006562)

r3 0.01117502
(0.004622)

0.122547
(0.028216)

0.052747
(0.076258)

r4 0.17940568
(0.100078)

0.007896
(0.002726)

0.127869
(0.008581)

r5 9.2705E-05
(0.000392)

6.05E-06
(0.000995)

0.002056
(0.04274)

r6 0.01489461
(0.004763)

0.015065
(0.012013)

0.027771
(0.090667)

r7 0.00896876
(0.004508)

0.112795
(0.028805)

0.342068
(0.146289)

r8 0.01450871
(0.004687)

0.006893
(0.010415)

0.020633
(0.09306)

r9 2.0153E-05
(0.000467)

0.000397
(0.002935)

0.003825
(0.059692)

t1 0.00293496
(4.817735)

0.000244
(0.325841)

0.003903
(3.993821)

t2 0.01794493
(14.99456)

0.001755
(0.528917)

0.009433
(3.740298)

t3 0.00879624
(39.50166)

0.090366
(203.7421)

0.002263
(657.095)

f 0.00921236
(2.328078)

0.088912
(11.74878)

4.78E-05
(36.76785)

s 0.000354
(0.028489)

Cx 0.00356987
(7.7248)

Cy 0.00356987
(7.7248)
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