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Abstract

Inspired by Zhang’s work on 1exible calibration technique, a new easy technique for calibrating a camera based on circular
points is proposed. The proposed technique only requires the camera to observe a newly designed planar calibration pattern
(referred to as the model plane hereinafter) which includes a circle and a pencil of lines passing through the circle’s center,
at a few (at least three) di4erent unknown orientations, then all the 5ve intrinsic parameters can be determined linearly. The
main advantage of our new technique is that it needs to know neither any metric measurement on the model plane, nor the
correspondences between points on the model plane and image ones, hence the whole calibration process becomes extremely
simple. The proposed technique is particularly useful for those people who are not familiar with computer vision. Experiments
with simulated data as well as with real images show that our new technique is robust and accurate.
? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The computation of camera’s intrinsic parameters, which
is usually called camera calibration, is one of the most im-
portant issues in computer vision [1,2]. A lot of literature on
camera calibration has appeared during the last decade [3,4].
With the increasing popularity of cameras used in o@ces and
families, many people who are not experts in computer vi-
sion look more and more concerned with an easy and cheap
calibration technique to help them to perform vision tasks.

To this end, Zhang recently proposed a 1exible camera
calibration technique by replacing an expensive classical
calibration grid with a planar pattern [3]. Zhang’s technique
needs to print a dotted sheet (Fig. 1) as the model plane, and
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the Euclidean coordinates of every dot on the model plane
should be measured accurately. After taking a few images
of the model plane at di4erent orientations by moving
either the model plane or the camera, the homographies
between the model plane and its projections can be de-
termined, then the camera’s intrinsic parameters can be
derived linearly from these homographies. Zhang’s tech-
nique is easy to apply, and its accuracy is generally higher
than self-calibration. Hence it is particularly desirable for
desktop vision systems (DVS) which are applied in of-
5ces and families. However a major drawback in Zhang’s
technique is that it requires the user to manually establish
correspondences of the projected corners between di4erent
images. This process is time-consuming and inconvenient
to users, in particular to those who are not familiar with
computer vision. To overcome this drawback, a novel
model plane (Fig. 1) is designed and used in this paper,
it is composed of a circle and a pencil of lines passing
through the circle’s center (referred to as the model circle
and the model lines later on). Employing this new model
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Fig. 1. Zhang’s calibration pattern (left) and our proposed calibra-
tion pattern (right).

plane, our calibration technique needs neither physical
measurements on the model plane, nor any correspondence
information, and the whole calibrating process can be done
totally automatically.

2. Theory

2.1. Camera model and concept of circular points

The camera is modeled as a pinhole one. The following
notation is used in this paper: an image point is denoted by
m = [u; v]T, a 3D point is denoted by M = [X; Y; Z]T, and
their homogeneous coordinates (or projective coordinates)
are denoted by m̃ = [u; v; t]T and M̃ = [X; Y; Z; t]T, respec-
tively. Then the imaging process from a 3D point M to its
image m can be expressed as

sm̃ = K[R t]M̃; (1)

where s is a non-zero scale factor, R; t are the rotation
matrix and translation vector from the world system to the
camera system, respectively. K is the camera matrix with
the following explicit form [4]

K =



fu s u0

0 fv v0

0 0 1


 :

We will 5rst consider that the world is embedded in a 3D
projective space. In this projective space, points satisfying
the equation t = 0 are called points at in9nity. They form
the plane at in9nity which is a 2D projective subspace em-
bedded in the 3D projective space. In this plane at in5nity,
points satisfying M̃TM̃=0 constitute the absolute conic �.
By using Eq. (1), we can easily verify that the image of ab-
solute conic � (IAC for short) is the conic K−TK−1. This
indicates that IAC encapsulates all the information on the
camera’s intrinsic parameters. Hence if we have determined
IAC, we can easily derive all the intrinsic parameters, e.g.,
via Cholesky factorization.

Without loss of generality, we assume that the model
plane lies on the X –Y plane in the world coordinate system,
so the equation of the model plane is Z = 0. Let us denote
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Fig. 2. The model plane.

the ith column of the rotation matrix R by ri, we have

s



u

v

1


= K[r1 r2 r3 t]




x

y

0

t




= K[r1 r2 t]



x

y

t


 : (2)

From Eq. (2), we can see that point [x; y; z; t]T on the
model plane also can be de5ned by 2D homogenous coordi-
nates [x; y; t]T. Based on projective geometry theory, points
on the model plane satisfying the equation t = 0 form the
line at in9nity of the model plane. We denote it by l∞. Now
we consider two speci5c points I(1; i; 0; 0), J(1;−i; 0; 0) on
l∞ (which are generally called circular points) [5]. Obvi-
ously both I and J satisfy the equation M̃TM̃= 0, so I and
J are points on the absolute conic �. If the images of I and
J are denoted by Im and Jm, then Im and Jm should lie on
IAC, which yields

ITmK
−TK−1Im = 0;

JTmK
−TK−1Jm = 0: (3)

Since I and J are conjugated points, under the perspective
transformation, Im and Jm are also conjugated ones. Hence
the two equations in Eq. (3) are actually identical. We note
that any equation in Eq. (3) can actually produces two linear
constraints on IAC by enforcing both its real and imaginary
parts to be zero. i.e.,

Re(ITmK
−TK−1Im) = 0;

Im(ITmK
−TK−1Im) = 0:

Now let us look at the proposed new model pattern
(Fig. 1) which can be characterized by Fig. 2, i.e., a pencil
of lines passing through the circle’s center O. If we assume
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Fig. 3. From model plane to image plane.

that the coordinates of O is (Ox; Oy; 0) and the circle’s
radius is r which is unknown, then the circle equation
expressed in homogenous coordinates is

(x − Oxt)
2 + (y − Oyt)

2 = r2t2: (4)

To compute the intersecting points of the line at in5nity
l∞ with circleO, we combine the equation of l∞(t=0) and
(4) to give

x2 + y2 = 0:

The solution is y=±ix. That is to say, the two intersect-
ing points can be expressed as (1;±i; 0) in homogeneous
coordinates, which are independent of Ox; Oy and r. It also
means that any circle in the model plane should intersect
the line at in9nity of the model plane at two circular points
[6] (see Fig. 3). Accordingly, in the image plane, the image
of the line at in5nity should intersect the image of the model
circle at the image of the two circular points.

In most cases, the image of the model circle is an ellipse,
which can be directly extracted from the image. Hence if we
can get the image of the line at in5nity (generally called the
vanishing line), then we can obtain the images of the two
circular points.

2.2. Computing the vanishing line

As sketched in Fig. 2, line L1 which is passing through the
model circle’s center O intersects the circle at point A1;B1,
and it also intersects the vanishing line l∞ at C1. Based on
the theory of projective geometry, the cross-ratio of the four
collinear points A1;B1;O;C1 will be −1, i.e.,

(A1B1;OC1) =
A1O
B1O

/
A1C1

B1C1
=−1:

Since O is the midpoint of A1B1 and C1 is a point at in-
5nity, we can also say that points A1;B1 harmonically con-
jugate with respect to pointsO;C1. Suppose the correspond-
ing image points of A1;B1;O;C1 are mA1 ;mB1 ;mO;mC1 ,
respectively, and since both collinearity and cross-ratio
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Fig. 4. {li ; i = 1; 2; : : : ; n} do not intersect at the same point.

are projective invariants, we may easily conclude that
mA1 ;mB1 ;mO;mC1 are also collinear and their cross-ratio is
kept as −1. Based on these two properties, we obtain the
following two equations:∣∣∣∣mA1mO
mB1mO

∣∣∣∣
/∣∣∣∣mA1mC1

mB1mC1

∣∣∣∣ =−1;

(mA1 ×mB1 ) ·mC1 = 0: (5)

mC1 can be easily solved through the above two equations,
and obviously mC1 should be on the vanishing line. If there
exist other lines on the model plane similar to L1, more
points on the vanishing line can be similarly obtained. Fi-
nally, we use all these points to compute the vanishing line
by a least squares 5tting.

As described above, during computing mC1 , we have as-
sumed that the pointmA1 ;mB1 andmO are collinear. In prac-
tice, such collinearity usually does not hold due to noise
and errors introduced in the line detecting process, and con-
sequently extracted image lines {Ii ; i = 1; 2; : : : ; n} do not
in practice always intersect with each other precisely at the
image of the model circle’s center (see Fig. 4). In this case,
we minimize the following cost function:

E =
∑
i

d2(mO; li);

where d(mO; li) is the distance from point mO to line li.
Minimizing this cost function becomes a standard nonlinear
optimization problem, and it can be solved by standard op-
timization algorithms such as Levenberg–Marquardt. After
obtaining mO, we back-project mO onto every li to compute
mOi . During our using Eq. (5) to compute mCi , we replace
mO by mOi in order to ensure mA1 ;mB1 and mO are indeed
collinear.

2.3. Extracting ellipse and lines

Accurately extracting the ellipse and lines from images is
an essential step for our new technique. Here we use random
sample consensus paradigm (RANSAC) [7] to extract lines
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and it proves to be performing well. In contrast to extract-
ing lines, extracting the ellipse is a bit more involved. In our
experiments reported in this paper, we use a least-squares
5tting technique based on algebraic distance to extract the
ellipse after we have removed all the lines from the im-
ages. Assume there are n image points {xi}= {(xi; yi); i=
1; 2; : : : ; n} on the ellipse, and the equation of the ellipse is

Q(x; y) = Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F;

we then minimize the cost function F =
∑n

i=1 Q2(xi; yi)

subject to the constraint of A2+B2+C2+D2+E2+F2=1 to
extract the ellipse. More detailed discussions on extracting
ellipse are in Refs. [8–10].
It is worth noting that using Euclidean distance as the min-

imizing criterion will generally outperform using algebraic
distance in feature extraction. However, since our model
plane is a white sheet containing a black circle and several
black lines, its projected image is quite ideal for applying
traditional feature extracting methods. We emphasize that
we detect the ellipse only after all the lines have been ex-
tracted and all the points of the lines have been removed.
Thus in this case, extracting ellipse by minimizing the alge-
braic distance proves to be accurate enough. However, we
do believe using more involved ellipse detecting techniques
will help improve the accuracy of 5nal calibration results.

2.4. Determining the intrinsic parameters

As discussed in Sections 2.1 and 2.2, once the image of
the model circle and the vanishing line are obtained, the
images of the two circular points Im; Jm can be easily derived
which are the intersecting points between the ellipse and the
vanishing line.

Let Im = [Im1; Im2; Im3]T, and

C= K−TK−1 =



C11 C12 C13

C12 C22 C23

C13 C23 C33


 :

From Eq. (3), we have

[Im1; Im2; Im3]C[Im1; Im2; Im3]T = 0: (6)

Because matrix C is symmetric, we de5ne a 6× 1 vector

c = [C11; C12; C22; C13; C23; C33]
T

and rewrite Eq. (6) as

Ac = 0 (7)

with A = [Im1Im1; Im1Im2 + Im2Im1; Im2Im2; Im3Im1 +
Im1Im3; Im3Im2 + Im2Im3; Im3Im3].

Since A is a complex vector, c is a real vector, Eq. (7) is
equivalent to the following two homogeneous equations:[
Re(A)

Im(A)

]
c = 0: (8)

If n images of the model plane are taken, by stacking n
such equations, we have

Vc = 0; (9)

where V is a 2n × 6 matrix. If n¿ 3 and rank(V)¿ 5; c
can be determined uniquely up to a scale factor in the
least-squares sense (if the skew factor s can be assumed to
be zero in advance, then two images are su@cient for the
calibration). The result can also be interpreted this way as
shown in [11]. In general, 5 points are required to 5t the im-
age of the absolute conic, since each image can only provide
two such points, the minimum number of images required
is: 5

2 + 1 = 3. The solution to Eq. (9) is well known as the
eigenvector of VTV associated with the smallest eigenvalue
[12].

Once vector c is obtained, K−1 can be computed using
Cholesky factorization [12], and K can then be obtained by
inverting K−1. This K is equal to the matrix of the real
camera intrinsic parameters up to a scale. We can obtain the
actual intrinsic parameters matrix by normalizing K such
that k33 = 1.

2.5. Recovering partial extrinsic parameters

As indicated in Section 2.1, any point (x; y; 0) in the model
plane satisfying y=±ix (x, y are complex number) should
correspond to Im (or Jm). Relating this to Eq. (2) we have

�1Im = K[r1 r2 t]




x

±ix

0


= x(Kr1 ± Kr2 · i); (10)

where �1 is a constant, let �1=x = a+ bi, we then have

r1 = �2K−1(aRe(Im) + b Im(Im));

r2 = �3K−1(bRe(Im) + a Im(Im)) (�2; �3 are constants);

where a; b are unknown constants, so r1, r2 can not be
uniquely obtained. It is worth noting that rT1 r2 = 0 is always
true regardless of the takings of a and b, hence it cannot add
any new more constraints to a and b. In the contrast, r3 can
be derived from r3 = r1 × r2,

r3 = �4[K−1 Re(Im)]× [K−1 Im(Im)];

where �4 can be obtained by ‖r3‖= 1.
We can also recover t up to an unknown scale factor �t

by mO which is the image point of the model circle’s center

t = �tK−1mO:

Now we can see that the extrinsic parameters r1; r2 are
lost when using our model plane. It is mainly due to the
central-symmetry of the model plane. As described in Fig. 3,
we assume C is the camera’s optical center, and the origin
of the camera coordinate system XCYCZC is located at C
also. From Section 2.1, we know that the coordinates of the
circular points on the model plane are independent of the
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model circle’s center O, thus without loss of generality, let
axis ZC pass through the circle’s center O and let O be the
origin of the world coordinate system XWYWZW , and axis
ZW be perpendicular to the model plane. Under such a setup,
vectors r1; r2; r3 of the rotation matrix R correspond to the
unit vector of XW -; YW -; ZW -axis in the camera coordinate
system, and the image of the model plane is only a4ected by
ZW -axis, while independent of XW -, YW -axis because of the
central-symmetry of the model plane. As a result, once the
camera’s intrinsic parameters and the image of the model
plane are obtained, we can only compute r3 from them.
Fortunately, in most cases, the camera’s extrinsic parameters
are not required by DVS, so the loss of r1; r2 is not a major
de5ciency for our new technique.

2.6. Degenerate con9gurations

A complete analysis of all possible degenerate con5gura-
tions in self-calibration has been carried out by Sturm [13]
and Ma [14]. In our method, degenerate con5gurations will
only occur when the projected images of circular points in
di4erent images are identical. From Eq. (10) we can see that
Im depends only on rotation matrix R and is independent
of translation vector t. Hence in order to avoid degenerate
con5gurations, R should be altered at each image taking.
In other words, the relative orientation between the camera
and the model plane must be di4erent for di4erent image
taking.

Another degenerate con5guration occurs when the image
plane is parallel to the model plane. In this case, any point
at in5nity of the model plane (x; y; 0; 0) will correspond to

K[r1 r2 t]



x

y

0


= K



x

y

0


=



"x + #y

$y

0


 ;

where ["x + #y; $y; 0]T is a point at in5nity of the image
plane. It means that the vanishing line coincides with the
line at in5nity of the image plane. In this case, the method
of computing the vanishing line in Section 2.1 becomes in-
valid. Such a degenerate con5guration can be easily detected
and avoided as follows. As shown in Fig. 5, mO is the im-
age of the model circle’s center, its corresponding polar line
associated with the ellipse (the projection of the model cir-
cle) is the vanishing line l∞. E is the center of the ellipse
whose corresponding polar line is the line at in5nity of the
image plane (denoted as L∞). According to the principle of
polarity transformation in projective geometry, a polar line
is uniquely determined by its corresponding polar associ-
ated with any proper quadric conic and vice versa. Hence,
l∞ will coincide with L∞ as well as mO coincides with E
while the image plane is parallel to the model plane. Based
on this property, by checking the coincidence of E and mO,
the degenerate con5guration can be detected and avoided
easily.

O
mE

∞L∞l

Fig. 5. Line at in5nity and vanishing line in image plane.

2.7. Algorithm outline

The proposed calibration algorithm is outlined as
following.

1. Print a circle and a pencil of lines passing through the
circle’s center on a white sheet, and attach the sheet to a
planar surface;

2. Take 3 or more images of the sheet at di4erent orienta-
tions.

3. For each image:
3.1 Extract the ellipse and the pencil of lines, then check

whether the con5guration is a degenerate one as
shown in Section 2.6.

3.2 Compute the vanishing line.
3.3 Compute the image points of the two circular points

by intersecting the vanishing line with the ellipse
(Fig. 5).

4. Determine vector c, then compute matrix K as shown in
Section 2.4.

3. Experiments

In this section, a number of experiments are reported. Both
synthetic and real images are used to evaluate the accuracy
and robustness of the proposed technique.

3.1. Simulation results

In all the subsequent computer simulations, the camera’s
setup is: fu=1200; fv=1000; s=0:2; u0=v0=0. The im-
age resolution is 1000× 1000. The orientation of the model
plane is characterized by a rotating axis r and a rotating
angle % about this axis (unit: degree). The position of the
model plane is denoted by a 3D vector t (unit: centimeter).
The model plane includes a circle with radius 50 (unit: cen-
timeter) and 10 lines passing through the circle’s center.
The including angle between any two adjacent model lines
is equal to 36◦.
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Table 1
Calibrating results at di4erent noise level

Noise level fu fv s u0 v0

0.4 1201.320 1001.351 0.201 −0.544 0.000
0.8 1201.609 998.817 0.263 −1.991 0.448
1.2 1198.048 1003.224 0.429 −2.396 0.852
1.6 1203.699 1006.150 0.605 −3.245 2.087
2.0 1207.070 985.183 0.630 −6.949 2.664
2.4 1182.346 1017.202 0.714 −7.567 4.369
2.8 1219.099 1018.161 0.838 −8.536 4.433
3.2 1221.168 1024.087 0.947 −15.345 9.673

3.1.1. Noise in<uence
In this experiment, three images of the model plane are

taken by the camera at the following three di4erent orien-
tations: r1 = [170; 50; 10]T; % = 15◦; t1 = [20; 20; 0]T; r2 =
[40; 50; 160]T; % = 15◦; t2 = [30; 20; 5]T; r3 = [20; 70; 70]T;
% = 15◦; t3 = [10; 30; 30]T. A Gaussian noise with 0 mean
and & standard deviation (noise level) is added to each
projected image point. The noise level varies from 0.4 to
3.2 pixels. The results are shown in Table 1. All the re-
sults in Table 1 are the average value of 100 independent
trials.

In order to investigate the accuracy of the proposed tech-
nique, the standard deviations of the 5ve intrinsic parame-
ters at each di4erent noise level are computed and shown in
Fig. 6. From this 5gure, we can see that though the noise
level increases to 6.0 pixels, the standard deviations of the
intrinsic parameters are still low. This indicates that the pro-
posed technique is accurate enough even with the presence
of a high degree of noise.

3.1.2. In<uence of the number of used images
This experiment investigates the performance regarding

to the number of the images used for calibration. The number
of the images used for calibration varies from 3 to 18. For
the 5rst 3 images, the camera’s intrinsic parameters and the
extrinsic parameters are the same as in the experiments in
Section 3.1.1. For other images, rotation axis, rotation angle
and position of the model plane for each image are altered
and chosen at random, while the camera’s intrinsic param-
eters keep unchanged. For each number, 100 independent
trials are done. A Gaussian noise with 1.0 standard devia-
tion is added in each trial. The results shown in Fig. 7 are
average relative errors. From this 5gure, we can see that in
general using more images will help increase the accuracy
of calibration results. However, once image number is more
than 6, such an improvement becomes insigni5cant.

3.1.3. Sensitivity to the deformation of the model circle
We also investigate the performance of the proposed tech-

nique with respect to the deformation of the model cir-
cle. For convenience, we only model a deformed circle as
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Fig. 6. Calibrating results (u0; v0; fu; fv; s) at di4erent noise levels.

an ellipse. We use the eccentricity e of an ellipse to de-
scribe the ellipse’s deviation from a circle (e is de5ned by
e=

√
1− (b=a)2 where a; b are the long axe and short axe of

an ellipse respectively. When e=0, the ellipse reduces to a
circle and there is no deformation). We increase e from 0 to
0.3. When e is equal to 0.3, the corresponding model circle
is greatly deviated from a true one, and such a case is nearly
impossible to happen in practice since the model pattern is
usually designed with high precision. For each e, 100 inde-
pendent trials are done. A Gaussian noise with 1.0 standard
deviation is added in each trial, and the average relative er-
rors are computed and shown in Fig. 8. From this 5gure, we
can see that the performance of the proposed technique is
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Fig. 8. Calibrating results (u0; v0; fu; fv) at di4erent eccentricity
of circle.

still satisfactory when the deformation of the model circle
is not too serious.

3.1.4. A comparison with Zhang’s technique
In order to make the comparison meaningful, all the pa-

rameters, e.g. the camera’s intrinsic and extrinsic param-
eters, noise level, image number are set identical during
the calibrating processes of applying the two techniques. In
addition, the corner points used by Zhang’s technique are
directly selected from the model plane employed in our
technique (totally 13 corners). Note that in both Zhang’s and
our techniques, we do not apply any nonlinear optimization
methods to re5ne the results as mentioned in Ref. [3]. We
show the relative errors of u0 and fu in Fig. 9. From this
5gure, we clearly see that the two techniques are compara-
ble when noise level is low. However, once the noise level
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Fig. 9. Calibrating results (relative error of u0 and fu, respectively)
compared to Zhang’s technique.

Table 2
Calibrating results from the 8 images (4 of them are shown in Fig.
10)

fu fv s u0 v0

1396.220 1400.731 −0.827 568.401 453.079

increases to as high as 3.0 pixels, the relative errors ofZhang’s
technique are distinctly higher than those of our technique.

3.2. Experiments with real images

The images were taken by a KODAK-DC120 digital cam-
era. The image resolution is 1280×960. We printed a circle
with 6 lines passing through the circle’s center on a white
paper with a laser printer, and attached the paper to the wall.
8 images of the model plane were taken at di4erent orien-
tations (4 of them are shown in Fig. 10). Then we applied
the proposed technique to these 8 images. The calibration
results are shown in Table 2.

In order to evaluate the calibration results in Table 2,
a well structured calibration object was reconstructed. Fig.
11 shows two images of the calibration object taken by the
previous calibrated camera. We manually picked 9 corre-
sponding points from each of the two visible sides (marked
by cross). Applying the structure-from-motion algorithm
(SFM) as described in Ref. [15], we reconstructed the two
visible sides. Two views of the reconstructed object from
di4erent viewpoints are shown in Fig. 12. We can clearly
see that the reconstructed points on the same side of the
calibration object are indeed coplanar. In addition, the com-
puted including angle between the two reconstructed sides
is 91:02◦, which accords well with the ground truth 90:0◦.
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Fig. 10. Four real images taken by a digital camera.

Fig. 11. Two images of a calibration object taken by a digital camera.

Fig. 12. Two views of the reconstructed calibration object.
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Fig. 13. Two images of a box and a puppet taken by a digital camera.

Fig. 14. Two views of the reconstructed box and puppet.

This proves indirectly that the calibrating results in Table 2
are accurate.

Another experiment on real images is also carried. We
used the same digital camera to take two images of a box
and a puppet as shown in Fig. 13. Then we reconstructed the
box and the puppet using the calibration results in Table 2.
Fig. 14 shows two views of the reconstructed results under
two di4erent orientations. The reconstructed results seem
realistic.

4. Conclusion

Inspired by Zhang’s technique, we propose a new 1ex-
ible calibrating technique based on the concept of circular
points. Our new technique is based on a novel model plane
consisting of a circle and a pencil of lines passing through
the circle center. The main points of our technique are: (1)
There is no need to establish point correspondences between
the model points and resulting image ones, hence the cali-
bration process becomes extremely simple; (2) there is no
need to measure the circle center’s coordinates and radius,
hence it is more convenient for the design and making of a
model plane. The proposed technique is particularly useful
for those people who are not familiar with computer vision.
Experiments with simulated data as well as with real images
show that our new technique is robust and accurate.

5. Summary

In this paper, we propose a novel camera calibration tech-
nique. This technique is inspired by Dr. Zhengyou Zhang’s
work on 1exible calibration technique. This technique
requires a newly designed 2D calibration pattern which
includes a circle and a pencil of lines passing through
the circle’s center. The camera only needs to observe the
planar calibration pattern at more than two di4erent un-
known orientations, then all the 5ve intrinsic parameters
are determined linearly. The main advantage of the pro-
posed technique is that it needs to know neither any metric
measurement on the model plane, nor any corresponding
information between the model plane and images. The only
burden of the technique is involving some ellipse and line
extraction from the images. After this feature extraction,
the whole calibration process becomes a straightforward
computation. Due to the simplicity of this technique, it is
particularly useful for those people who are not familiar
with computer vision. Experiments with simulated data as
well as with real images show that our new technique is
robust and accurate.
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