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A Unified Approach to the Linear Camera 
Calibration Problem 

WILLIAM I .  GROSKY A N D  LOUIS A. TAMBURINO 

Abstract-The camera calibration process relates camera system 
measurements (pixels) to known reference points in a three-dimen- 
sional world coordinate system. In this correspondence, the calibration 
process is viewed as consisting of two independent phases: the first is 
removing geometrical camera distortion so that rectangular calibra- 
tion grids are straightened in the image plane, while the second is using 
a linear affine transformation as a map between the rectified camera 
coordinates and the geometrically projected coordinates on the image 
plane of known reference points. Phase one is camera dependent, and 
in some systems may not be necessary. Phase two is concerned with a 
generic model that includes 12 extrinsic variables and up to 5 intrinsic 
parameters. 

The generic extrinsic variables include a rotation matrix describing 
the orientation of the optical axis and the displacements of the cam- 
era’s focal point in the world coordinate system. The intrinsic variables 
correct for scale, displacement of the optical axis, and skewing of the 
coordinate axis in the camera coordinate system. Although there are 
three independent rotation angles, we treat the components of the ro- 
tation matrix as nine extrinsic parameters satisfying six constraint 
equations. We present general methods which handle additional con- 
straints on the intrinsic variables in a manner consistent with explicit 
satisfaction of all six constraints on the orthogonal rotation matrix. We 
describe the use of both coplanar and noncoplanar calibration points. 
There are fewer equations in the coplanar case; therefore, it is neces- 
sary for the user to supply up to three additional constraint equations. 

Index Terms-Affine transformations, extrinsic parameters, intrin- 
sic parameters, least squares, linear camera calibration 

I. INTRODUCTION 
The Numerical Stereo Camera System [I ] ,  [7] which resides in 

the Avionics Laboratory of Wright-Patterson Air Force Base uti- 
lizes both a passive as well as an active camera to recover 3-D 
scene information. This is accomplished by solving an overdeter- 
mined system of linear equations by the well-known method of 
least-squares [6]. Specifically, for each camera there are two linear 
equations in the parameters x w ,  yw, and z w  the world coordinates 
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of a given scene point which is to be determined, where the coef- 
ficients are specific functions of x *  and y * ,  the known image co- 
ordinates of the projection of the given scene point, as well as of 
the camera geometry (extrinsic parameters) and the camera optics 
(intrinsic parameters). The extrinsic parameters give information 
regarding the camera position and orientation with respect to  the 
world coordinate system, while the intrinsic parameters include the 
focal length, scale factors which go from units of length to pixels 
in the image plane, the intersection point of the camera axis with 
the image plane expressed in pixels, as well as values expressing 
the different types of possible lens distortions. The term camera 
calibration refers to finding the values of these parameters for a 
given camera set-up so that the coefficients of xw, y w ,  and zw in 
these linear equations can be calculated as functions of x * and y *. 

There has been much previous work in this area. The techniques 
to solve this problem range from simple linear equation solving to 
complex nonlinear optimization approaches. The latter methods 
have been used by [4], [8], but are extremely inefficient and must 
be manually guided. The former methods, most notably used by 
[5], [9], [lo], while efficient, tend to ignore constraints which the 
extrinsic and intrinsic parameters must obey. These latter short- 
comings become worse when an increasing number of parameters 
are specified in advance. 

In this correspondence, we present unified solutions for many 
interesting subcases of this problem. Most importantly, our soh- 
tions satisfy all the necessary constraints as well as being relatively 
simple to compute. 

The organization of this correspondence is as follows. Section 
I1 derives the linear camera calibration equations. In Section 111, 
we present our unified solution technique as a I-step method of 
solution, while Section IV illustrates various subcases of the prob- 
lem which may be solved using this method. A companion 2-step 
method is developed in Section V. Section VI presents some ex- 
periments we have conducted using our techniques. Finally, in 
Section VI1 we offer our conclusions. 

11. THE GENERAL LINEAR CAMERA CALIBRATION PROBLEM 
We start with a world coordinate system as shown in Fig. I .  We 

would like to express points in this system with respect to a camera- 
centered system, xc, yc. and zc, where the camera axis zc points 
along the -zw direction and the ( x c ,  yc)-plane is parallel to the 
image plane. To accomplish this, we first translate the origin of the 
world system to the focal point of our camera ( x F ,  y F ,  z F )  and then 
apply a pan 0 about the y-axis; a tilt 4 about the x-axis; and finally, 
a roll $ about the z-axis. See Fig. 1. A point (xw, y w ,  zw,  1) ex- 
pressed in homogeneous coordinates in the world-frame is mapped 
into the camera-centered system (xc, yc, zc, 1) by the following 
transformation [3]: 

r R , ,  R~~ R , ,  

L -DI -D2 -D3 

where 
R I 1  = cos 0 cos $ + sin 0 sin 4 sin $, 

RI2  = -cos 0 sin $ + sin 0 sin 4 cos $, 

RI3  = sin 0 cos $, 

RZI  = cos 4 sin $, 

R,, = COS 4 COS $, 

R23 = -sin 4, 
R3, = -sin 0 cos $ + cos 0 sin 4 sin $, 

0 
1 

( 1 )  

“I 
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R32 = sin % sin $ + cos % sin I$ cos $, 

R,, = cos e cos 4, 

D l  = X F R l l  + Y F R 2 1  + zFR31 > 

O2 = X F R 1 2  + Y F R 2 2  + ZFR32r  

D3  = xFRIS  + yFR23 + Z F R 3 3 .  

Letting Tbe  the matrix of ( I ) ,  C = (xc ,  y c ,  zc, l ) ,  and W = ( x W ,  
Y W ,  Z W ,  I ) ,  (1) becomes 

C, = W,T,j ,  (2)  
for 1 I J 5 4, where we use the notation of repeating subscripts 
being summed. Using the standard projection equations [3], the 
screen coordinates (x ', y ') satisfy 

y ' =  - F - ,  Yc 
zc 

where F is the focal length of the camera and the image plane is 
defined by zc = -F .  

Measurements on the calibration target image are made in raster 
or pixel coordinates (x *, y *). We characterize our linear calibra- 
tion model by the following affine transformation which relates the 
measurements in raster coordinates to those in screen coordinates 
as follows: 

x *  = xo + C l l X '  + C 1 2 Y '  

y *  = Yo + c21x' + C22Y ' 9  

(4a) 

(4b) 
or, reformatted in a manner to highlight the combination of rota- 
tion, scaling, and translation, 

x * = no + p x ( x  ' cos w + y ' sin w )  (5a) 

y * = y o + p , ( x ' s i n u  + y ' c o s u ) ,  (5b) 
where U ,  w are rotation angles, p r ,  p y  are scaling parameters in 
units of pixelshnit length, and xo, yo are the displacements of the 
optical axis in raster coordinates. 

In this calibration formalism, we do not include nonlinear dis- 
tortions or warping. In practice, that type of distortion is handled 
separately before applying the linear calibration model. In the Nu- 
merical Stereo Camera System, we use bivariate polynomials to 
find a mathematical transformation to take us from the measured 
and distorted image coordinates ( X d ,  Y d ) ,  in pixels, to a new pixel 
coordinate system ( x * ,  y * ) ,  in which the camera distortion is re- 
moved. The form of these polynomials is 

x *  = x*(xd,  yd) 

= PO + P l x d  + P2Yd + P3xdYd  + P 4 d  + P 5 Y i  + ' ' ' (6a) 

+ q3xdYd + q4Yj + q 5 Y j  + ' ' ' .  (6b) 
Equations (6a) and (6b) are used with a special calibration target 
which has an accurate rectangular grid. This grid appears warped 
when viewed on the monitor. These polynomials are used to map 
the warped grid images into undistorted rectangular grids [2]. The 
warping correction straightens out the grid lines. We shall assume 
that this type of mapping has beerr done prior to the application of 
the affine transformations of (4a) and (4b), which enables one to 
complete the calibration process. These affine transformations ad- 
dress scaling, displacement of the optical center, and any skewing 
of the coordinate axis in the corrected camera coordinate system 

Subsequent analysis reveals that it is only possible to solve for 
( x * ,  Y * ) .  

Fig. 1.  World coordinate system. 

the variable combinations pxF,  p ,  F, and U - w ,  where F is the focal 
length defined in (3a) and (3b). It is convenient in subsequent com- 
putations to re-express the affine transformations in the following 
form: 

(7a) 
allx' + a12y' 

F 
x* = xo + PI 

azlx' + a22Y' 
Y * = Y o + P ,  3 

where P, = pxF,  P, = prF,  a l l  = cos w ,  az l  = sin w ,  a21  = sin 
U, and aZ2 = cos U. Using the standard projection equations (3a) 
and (3b), we get 

(sa)  all% + a12yc 
zc 

xo - p x  x *  = 

a21 xc + a22yc 
zc 

Y *  = Y o  - P? 

Substitution of (2) into (8a) and (8b) provides the following linear 
camera calibration equations, which relate the pixel and world co- 
ordinates: 

W,[T, , (x*  - ~ 0 )  + px(a11 Tit + at2Ti2)] = 0 

W [ T i d Y *  - YO) + P d a z ,  Til + az*T,z)] = 0.  

(sa)  

(9b) 

The following abbreviated form for these basic equations high- 
lights the 12 independent coefficients Ti,, X i ,  and Y, : 

x*W;,T,, + W,X, = 0 

y*WjTi, + WjYj = 0, 

( loa)  

( lob )  

where three of the coefficients are the four extrinsic variables T. ,  
= [ R I 3 ,  R , , ,  R , , ,  - D 3 ] ,  and the other eight are nonlinear func- 
tions of the camera model parameters X ,  = P x ( a l l  TI ,  + a , 2 T i 2 )  - 
xoTj3, for 1 I i  5 3 ,  Y, = P , ( a 2 ,  Til  + a2?Ti2)  - yoTj3 ,  for 1 5 
i 5 3 , X 4 =  - P , ( a l l D I  + a 1 2 D 2 ) + x o D 3 , a n d Y 4 =  - P , ( a z l D I  
+ a 2 2 D 2 )  - yOD3.  This form of (loa) and (lob) eliminates the 
need to write the cumbersome products pxF and p?F because it 
effectively absorbs the focal length into P, and P,.. 

Calibration consists of solving (loa) and (lob) for RO, 1 5 i ,  j 
5 3, P x ,  Py, xo, yo,  D I ,  D 2 ,  D 3 ,  and a t ,  1 5 i , J  5 2 ,  so that 
one can finally find the 3-D coordinates of a scene point corre- 
sponding to a known image point, by substituting known values for 
x * and y * in (loa) and (lob),  resulting in two linear equations for 
the unknowns x W ,  y W ,  and z W .  (Note that by utilizing a second 
camera, we will have four equations for these three unknowns.) 
We solve for the above unknowns by substituting known values for 
x * and y *, as well as known values for the corresponding xW , yw , 
and z w .  Note that x F ,  y F ,  and zF can be easily calculated from 
values for the above variables, utilizing the definitions of D ,  , D 2 ,  
and D , .  

The a,, will mask some of the ambiguity of deciding what to do 
with the two angles U and w .  The choice of U = U ,  for example, is 
superfluous because this represents a rotation about the optical axis 
that is included in the extrinsic parameters. Without loss of gen- 
erality, we may choose to set either u or w equal to 0, with the 
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Fig. 2. Skew angle 

remaining angle representing a skew angle for a nonorthogonal co- 
ordinate axis. See Fig. 2 .  

Eliminating one angle also provides a proper match of 17 un- 
knowns with the maximum number of available equations. See Ta- 
ble I. Hence, it provides the most general linear model. In order to 
remove the confusing two angle notation, we shall assume in the 
remainder of this correspondence that w is identically equal to 0; 
that is, a l l  = 1, a I 2  = 0, a, ,  = sin U, and a 2 2  = cos U. 

The object of this correspondence is to review methods of han- 
dling different numbers of intrinsic variables and constraints in a 
manner that is also consistent with the explicit satisfaction of all 
six constraints for the rotation matrix components. Although there 
are three independent rotation angles-pan, tilt, and roll-we treat 
the components of Rij as 12 extrinsic parameters satisfying six con- 
straint equations. This correspondence also distinguishes the use of 
both coplanar and noncoplanar calibration points. Because co- 
planar points involve fewer equations, it is necessary to supply at 
least three additional constraints. This reduces the number of un- 
knowns from 17 to 14 in order to match the number of equations 
available in this case. Usually, we impose these additional con- 
straints on the intrinsic variables. 

111. A UNIFIED SOLUTION TECHNIQUE AND THE ONE-STEP 
METHOD 

In this section, we show how to reduce the basic camera cali- 
bration equations (loa) and (lob),  which form a set of homoge- 
neous equations with 12 independent coefficients T, , ,  X ,  , and Y, , 
for 1 5 i 5 4,  into sets of nonlinear equations which can easily 
be used to solve for the intrinsic and extrinsic model parameters. 
Since we have a homogeneous system, we put a proper subset of 
the 12 coefficients on the right side of the equations and solve for 
the remaining coefficients in terms of the coefficients in the given 
subset. This is done via the technique of least-squares [6] .  The size 
of the subset put on the right side is proportional to the amount of 
degeneracy in the problem. The approach in which we use both 
(loa) and (lob) simultaneously, is called the 1-step method. 

Specifically, suppose we have N scene points (x, , y j  , z j ) ,  1 I j 
5 N ,  in the world system, as well as their corresponding image 
coordinates 

Our homogeneous system would then consist of 2 N equations. Let 
{ A l ,  . . . A k } ,  1 5 k < 12, be a subset of the 12 coefficients which 
will be on the left-hand side of our equations, while { p , ,  . * . , 
p 1 2 - k }  comprise the remaining coefficients. Our system then takes 
the form JG = KP, where J is a 2 N x k matrix of coefficients, G T  
= ( A , ,  . . . , A k ) ,  K is a 2 N  X (12 - k )  matrix of coefficients, 
and PT = (pl ,  . . , p12-k) .  We must have 2 N  2 k ,  and in general, 
we will have 2 N > k , so that we have an overdetermined system 
of linear equations to be solved via least-squares. This is done as 
follows. We have J’JG = J’KP. Notice that J’J is a square matrix. 
Thus, G = (J‘J)-’ JT KP,  if (J’J)-’  exists, which will be the 
case if the 2 N  points do not all lie on the same plane. The result 
of this calculation expresses k coefficients in terms of the remaining 
12 - k .  In solving for our 20 original coefficients, we would then 

bl”? Yl”). 

TABLE I 
LINEAR CALIBRATION MODEL 

Unknowns I Symbol Quantity 

17 

Type 

Exuinsic 

Extrinsic 

InninSiC 

InuinSiC 

InuinindC 

hainsic 

have k equations of the form A, = MP,  for M a row vector of 
coefficients and 1 5 j I k .  Note that we do not advocate actually 
computing M as it is defined above. There are other, more numer- 
ically stable techniques, such as the singular value decomposition 
[6] which may be used. We also have six independent constraints 
on the quantities R,, , 1 I i ,  j ,  5 3,  which express that these are 
elements of a rotation matrix. These constraints can be written in 
numerous ways: either that each row is a unit vector and is orthog- 
onal to each of the other two rows, or that each column is a unit 
vector and is orthogonal to each of the other two columns, or that 
some two rows are unit vectors, orthogonal to each other, while 
the remaining row is the cross-product of the two given rows, or 
that some two columns are unit vectors, orthogonal to each other, 
while the remaining column is the cross-product of the two given 
columns. 

We thus have k + 6 equations, k 5 11, which are sufficient to 
find the 17 extrinsic and intrinsic unknown variables. If there are 
any a priori constraints on these variables which reduce the number 
of unknowns, it is necessary to reduce accordingly the value of k 
from its maximum value of 1 I .  When this is done, we say we have 
a degeneracy. Highly degenerate cases can result in more compli- 
cated computations involving systems of multivariate polynomials. 
This is more clearly indicated below. 

For a particular value of k ,  using at least r k /2  1 noncoplanar 
3-D points ( x ,  , y ,  , z , )  as well as their known projections 

We get, via the method of least-squares, equations of the form 

P , ( a , , R , ,  + a I 2 R I 2 )  - xORz3 = A , ,  for 1 5 i I 3, 

(1 la-1 IC) 

P, , (az lR , ,  + u, ,R,~)  - yoR,, = B , ,  

R t 3  = C , ,  

for 1 5 i 5 3, 

(12a-12c) 

( 13a-13c ) 
for 1 5 i 5 3 ,  

xoD3 - P , ( a , , D ,  + a12D2) = E l ,  

yoD3 - P,(a2iD1 + ~ 2 2 0 2 )  = Ez, 

(14a) 

(14b) 

D3 = G ,  ( 14c) 

where the right-hand side of each equation is a known linear com- 
bination of the unknowns in P = {pI , . . . , p 1 2 - k } .  Some of these 
equations may be identities, however, depending on the nature of 
P. For example, if P = { D 3 ,  } , then (13c) and (14c) are not 
found via least-squares, but are the identities R3,  = 0 D, + 1 * 

R 3 ,  and D, = 1 . D3 + 0 . R,,, respectively. 
Let us defineA = ( A , ,  A , ,  A 3 ) ,  B = ( B , ,  B , ,  B , ) ,  C = ( C , ,  

c2 1 C3L E = ( E , ,  E 2 ) ,  Q I = ( RII ,  R21 1 R31), Q2 = ( R I 2  9 R 2 2 ,  

R32) ,  Q3  = ( R ~ I ,  R32, R33), 71 = (a l l ,  a I 2 ,  0)  = (1, 0,  O), and 
r z  = ( a z 1 ,  a 2 2 ,  0) = (sin U ,  cos U ,  0). Note that 1 7, 1 = 1 r 2  1 = 

1, 7 ,  . 7 2  = sin U and r 1  X r 2  = cos U. Then (lla)-(13c) may be 
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expressed as the three vector equations 

P, (a l lQl  + a lzQz)  - xoQ3 = A, 

Py(a2,Q1 + a22Q2) - Y o Q 3  = B ,  

(153) 

(133) 

Q ,  = c. (15c) 

(16) 

The six necessary constraints can now be written as 

Q ,  . Q ,  = A,, for 1 5 i,  j 5 3, 
where 6 ,, is the Kronecker delta function. 

Using the above equations and defining M = A - (A . C )  C = 
A + xoC and N = B - ( B  . C ) C  = B + yoC, we can easily 
derive that 

X O  = -A * C,  

yo = - B  . C ,  

(17a) 

(17b) 

(18a) 

(18b) 

P, = ( A  - (A * C ) C (  = ( A  X CI, 

Py = IB - ( B .  C ) C (  = ( B  X C J .  

Equations (15a)-( 15b) then become two simultaneous linear 
equations for the two unknowns Q and Q , .  Solving, we get that 

M Q = -  
I NI’ 

N M 
Q2 = sec v - - tan U -, 

IN1 IMI 
Q 3  = c. 

Using 

c . c =  1, 

one can verify that these solutions satisfy all the constraints of (16). 
Using (14a) and (14b), we see that 

. (21b) 
(A * C) G + El ( B  * C )  G + E2 

IN1 
- sec U I MI 

D ,  = tan u 

Finally, from (15a) and (15b), we have the following equation 
which relates 7 I and r 2  : 

A * B - (A * C ) ( B .  C) 
( A  - (A - C ) C ( l B  - ( B  . C)C(  ’ 

71 * 7 2  = ( 22-4 1 

M * N  
sin v = - 

IMIINI’ 
Taking cross-products of (15a)-(15c) does not produce any new 

equations when one uses the identity ( E ,  x E,) . ( E ,  x E,) = 
( E I  * E,) (E, 

The above equations do not, as yet, provide numerical solutions 
for our parameters, as A ,  B ,  and C are linear combinations of 12 
- k unknowns. We will next show how to use these equations to 
solve for these unknowns for various subcases of our problem. 

E,) - ( E I  * E,) (E, . E3), along with (20). 

IV. SOME ILLUSTRATIVE SOLVED SUBCASES FOR THE ONE-STEP 
METHOD 

We begin with the most general case, which has 17 model pa- 
rameters, because it is both interesting and easy to follow. This is 
the case with no constraints on the skew angle. For this case, set 
P =  {D3} .Thus ,A  = a D 3 , B = / 3 D 3 , C = y D 3 , E = ~ D 3 , a n d  
G = 1 * D 3 ,  where a, /3, y, and E are numerically known three- 
dimensional vectors. Using (20), we can then solve for 0, , after 
which, back-substituting this value of D3 in A ,  B ,  C ,  and E ,  we 
canso lve fo rvus ing (22b) ,  a n d x o , y o , p x F , p y F ,  0 1 ,  Qz, Q 3 ,  

D1 , and 0 2  using (17a)-(21b). See [5]  for a different interpretation 
of this situation. 

Also of particular interest is the case in which the skew angle is 
known to be orthogonal, perhaps as the resylt of an initial phase 
that removed camera distortion. Here we take U = 0 so that the 
number of unknown variables is 16. One sees from (22b) that the 
degeneracy involves a zero dot product on the right side of the 
equation. In order to resolve this degeneracy, we let P = { D , ,  

+ y * R 3 , ,  E = c D 3  + E*R, , ,  and G = 1 D ,  + 0 * R , , ,  where 
a, 0, y,  E ,  a*,  0*, y*, and E *  are numerically known three-di- 
mensional vectors having y3 = 0 and y *3 = 1. We then use (20) 
and (22b) to solve for 0 ,  and R , , ,  which involves solving a fourth 
order polynomial equation. This is followed by back-substituting, 
as before, to get our final results. Note that 0 ,  > 0, which narrows 
down the choices. 

Taking the example one step further, suppose we also know that 
the aspect ratio U = P,/Px = 1. This requires equality between 
(18a) and (18b), which ordinarily define P, and Py independently. 
We now put P = { D ,  , R 3 , ,  X , } ,  and use this equality between 
(18a) and (18b), together with (20) and (22b), to solve for this 
subset of three coefficients followed by back-substitution as before. 
Actually, we could have used Y4 instead of X ,  here. In practical 
applications, the particular geometry will dictate the preference. In 
this case, one starts out with (20) and solves for X ,  in terms of D ,  
and R3,.  When X 4 ( D 3 ,  R 3 , )  is substituted into the other equa- 
tions, one obtains two eighth-order bivariate polynomials to solve 
for D ,  and R, , .  One now sees a pattem of more constraints re- 
quiring more coefficients on the right side in order to maintain the 
independence of the unknowns in these equations. 

In general, each additional constraint will introduce another 
eight-order multivariate polynomial equation to the set to be solved. 
The procedures are fairly straightforward for each new situation: 
first solve the basic linear equations and then solve a set of multi- 
variate polynomial equations. 

The above cases are solved utilizing known corresponding scene 
and image points such that not all the scene points lie on the same 
plane. If all the scene points are coplanar, the least-squares based 
technique previously discussed breaks down, as the matrix for 
which we need the inverse becomes singular. We can, however, 
proceed as follows. Assume, without loss of generality, that the 
plane in which all the scene points lie is zw = 0. Equations (loa) 
and (lob) would then form a homogeneous system in nine linearly 
independent unknowns. The unknowns X 3 ,  Y , ,  and R 3 ,  would not 
appear. Thus, we have k + 6 equations, k 5 8, in 17 unknowns, 
which means that we must deliberately provide at least three ad- 
ditional constraints in order to reduce the number of variables to 
14 or less. 

As an example, suppose we know x o ,  y o ,  and U. Taking k = 8,  
we let P = { D 3 } .  Thus, A = a D 3 ,  B = /3D3,C = y D , ,  E = 
E D , ,  and G = 1 . D 3 ,  where a,, &, y3, as well as D ,  are to be 
determined. Using (17a), (17b), (20), and (22b), we have four 
equations for these four unknowns. When the skew angle U is equal 
to 0, the computation is slightly different than when it is not equal 
to 0. In the former case, we must solve a quadratic equation for 

Cases where other pairs of parameters are known are similarly 
solved. To solve cases where we know three parameters, we let k 
= 7 a n d P  = { D 3 ,  R , , } .  

See Table I1 for some resolved cases of the one-step method, 
where various combinations of the intrinsic parameters are known 
beforehand. Note that as more information is known, coplanar 
points allow calibration with less complexity than noncoplanar 
points. 

V .  THE TWO-STEP METHOD 
The one-step method solved (loa) and (lob) simultaneously. 

Now, we show how to solve them independently. This method will, 
in general, allow simpler solutions, but at the price of lower ac- 
curacy. 

In solving (loa),  we would have (14a), (14c), (15a), and (15c) 
to solve, while in solving (lob),  we would have (14b), (14c), (15b), 
and (1%) to solve. 

R , , } .  Thus, A = a D 3  + C Y * R ~ ~ ,  B = 0 0 3  + P*R33,  C = Y D ,  

( D 3 ) 2 .  



TABLE I1 
SOME RESOLVED CASES OF THE LINEAR CALIBRATION PROBLEM 

ispect 
Ratio 
=P7/P. 

X 

X 

X 

X 

X 

Intrinsic Unknowns 

Skew 
Angle 

U 

X 

X 

X 

X 

X 

X 

X 

X 

Number 
O f  

Inknowni 

17 
16 
16 
15 
15 
15 
14 
14 
14 
13 
13 
12 

14 
14 
14 
13 
13 
12 

= 

Ion-Coplanar 
or 

Coplanar 

N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

C 
C 
C 
C 
C 
C 

Letting R = A X C and S = B X C ,  in the former case we 
would first have solutions to (15a) and (15c) consisting of 

x o = - A . C ,  (23) 

(24) P, = ] A  - ( A .  C)Cl = IA x CI,  

M 
Q =-  

I 14’ 
R 

Q 

2 -  ( R I ’  

Q ,  = c ,  (25c) 
while in the latter case, we would first have solutions to (15b) and 
(15c) consisting of 

yo = - B . C ,  (26) 

N S 
Q l  = s i n u - + c o s u - - ,  

PI Is1 
N S 

Q 2  = cos U - - sin U -, 
IN1 PI 

0 3  = c .  (28c) 
Assuming that (20) is satisfied, one can verify that both ap- 

proaches produce solutions satisfying all constraint equations (16). 
Note, however, that each solution is based on only a single image 
coordinate x * or y *. Also note that we get two solutions for certain 
parameters. 

We now illustrate this technique in the noncoplanar situation, 
when all we know is U. Recall that in the one-step approach, we 
put P = { D , ,  R33).  In this case we put P = { D 3 } ,  resulting in a 
simpler solution. Thus, C = y D 3 .  Solving (loa),  we would use 
(20) to solve for D , ,  then back-substitute this value in (23)-(25c) 
to get numerical values for xo , P, , Q I , Cl ,, and Q 3 .  Note that in 
solving (loa),  we would also have an equation in D I and D ,  . Solv- 
ing (lob), we would also use (20) to solve for D 3 ,  then back-sub- 
stitute this value in (26)-(28c) to get numerical values for y o ,  Py , 
Q I ,  Q 2 ,  and Q 3 .  Note that in solving (lob),  we would have yet 
another equation in D ,  and D , .  Using these two linear equations 

in D I and D , we can solve for these parameters individually. We 
thus have solved numerically for every unknown, with some un- 
knowns, namely D 3 ,  Q , ,  Q 2 ,  and Q 3 ,  having two possible values. 

See Table I1 for some resolved cases of the two-step method, 
where various combinations of the intrinsic parameters are known 
beforehand. 

VI. SOME EXPERIMENTS UTILIZING OUR TECHNIQUF~ 

Using data supplied by the Systems Avionics Division of Wright- 
Patterson Air Force Base, and referring to Table 11, we conducted 
experiments for the one-step method of Cases 1 and 2 and for the 
two-step method of Case 2.  These are the cases where PI, P?, xo , 
y o ,  and 0 are all unknown. The given data consisted of 20 points 
of ( x  *, y *, x,, y , ,  z W )  values from a passive camera and 27 points 
of ( x * ,  y * ,  x,, y W ,  z,) values from an active (ranging) camera 
for a standard calibration object. See Tables III(a) and (b) for a 
listing of this data. 

To see how sensitive the various calibration techniques were to 
the quantity of points used, we conducted experiments using N 
points, 16 5 N I 20, of passive camera data. 

For the one-step method of Case 1 of Table 11, the results are 
exhibited in Tables IV(a)-(e). To determine the accuracy of the 
results, we used (loa) and (lob) to solve for x * and y *, respec- 
tively. Utilizing the given 20 passive calibration points, we then 
back-substituted the values of X I ,  X , ,  X, , X , ,  Yl , Y 2 ,  Y ,  , Y 4 ,  
D 3 ,  R I 3 ,  R2,,  R , , ,  x w ,  y , ,  zw into these equations to calculate 
the corresponding values for x * and y *, and compared them to the 
given values. We also utilized the active camera calibration along 
with the passive camera calibration and solved for the X W ,  y w ,  zw 
values of the given 27 active calibration points, comparing them 
with their true values. This follows from the fact that by using a 
second camera, we have four linear equations for these three un- 
knowns. In Tables IV(a) and (b) notice the relative stability of pa- 
rameter values for the different values of N , except for the values 
of xo and yo. These values seem to be particularly sensitive to the 
number of points chosen, and hence, to noise. As shown in Table 
IV note that each dot product of the form Q i  . Cl ;, for 1 5 i I 3, 
equals 1, while each dot product of the form Q ,  . Q j ,  for 1 I i # 
j 5 3, is o(10-I~). 

In Table IV(a) pay particular attention to the value of sin U. This 
demonstrates that the image axes are not quite perpendicular. Since 
they are supposed to be perpendicular, we also implemented the 
one-step method of Case 2 of Table I1 and let U = 0. This technique 
is much more complicated than the previous one. Since U = 0, we 
had to solve a 4th degree equation for ( D , ) , .  Even though D ,  > 
0, we still had up to four values of D 3  to consider. We eliminated 
those values of D 3  which resulted in large errors from back-sub- 
stituting and comparing the true values of (x  *, y *)  with the com- 
puted values of (x  *, y *). These results are shown in Tables V(a)- 
(d). Note here that each value of N gives 2 sets of values for the 
intrinsic and extrinsic parameters. These two sets of values show 
up for each value of N .  Also notice that the set of values exhibiting 
the smaller errors agrees with that found in Case 1. The errors in 
Case 2 are very compatible with those found in Case I ,  sometimes 
better, sometimes worse. At the end of this section, we will present 
an error analysis of these and other cases which indicates that the 
Case 2 formulation is less sensitive to error than the Case 1 for- 
mulation. As shown in Table V(e), note that each dot product of 
the form Q I * Q i ,  for 1 I i 5 3 ,  equals 1, while each dot product 
of the form Q j  * Q j ,  for 1 5 i # j 5 3, is O(1O-l6). 

Similar results are exhibited in Tables VI(a)-(e) for the two-step 
method of Case 2 of Table 11. 

Lastly, we compared our techniques with those of [ 5 ] .  As shown 
in Tables VII(a) and (b), the difference in values of the dot products 
Q I . 0, and 0, * Q 3  between his approach and our previous ap- 
proaches are considerable, ranging from 1 to 15 orders of magni- 
tude. His values for D , ,  D , ,  p ,F,  pvF ,  xo, y o ,  R I ,  and Q 3  are 
similar to ours. For D z  and RI, we have 

sin ~ ( O u r C a s e  I )  + cos QSOurCaseI) = Q(Ganapathy1 
I ( 29a 1 
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Maximum 
A b s o l u t e  

x*,y* Errors N 

16 .643862,.684055 

17 .623482..749474 

18 ,69833 L.7993 I7 

19 .709364,.872149 

20 .867626..854868 
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A v e r a g e  
A b s o l u t e  

x*,y* Errors 

.197008,.215006 

.221106..231009 

.265789,.255020 

.333795,.272628 

.327508,.25 I7 12 

TABLE 111 
(a) PASSIVE CAMERA DATA. (b) ACTIVE CAMERA DATA. 

Maximum 
A b s o l u t e  

x*,y* Errors N 

16 2.04595,.713251 

17 2.13823..432688 

1.36062,.159048 18 

19 ,466599,. 126079 

TABLE IV 
(a) INTRINSIC PARAMETER VALUES FOR THE ONE-STEP METHOD OF CASE 1 

OF TABLE 11. (b) x *, y * ERRORS FOR THE N PASSIVE POINTS FOR THE ONE- 
STEP METHOD OF CASE 1 OF TABLE 11. (C) X *, y * ERRORS FOR THE 

REMAINING 20 - N PASSIVE POINTS FOR THE ONE-STEP METHOD OF CASE 1 
OF TABLE 11. (d) xw, y , ,  zw ERRORS FOR THE 27 ACTIVE POINTS FOR THE 
ONE-STEP METHOD OF CASE 1 OF TABLE 11. ( e )  DOT PRODUCTS FOR THE 

ONE-STEP METHOD OF CASE 1 OF TABLE 11. 

N I PI, PY I sin u 

A v e r a g e  
A b s o l u t e  

x*,y* Errors 

1.28321 ,.377788 

1.60614..272443 

.893255..0950419 

.466599.. 126079 

- __ 

XW - 
-2.500 
-4.000 
-2.500 
-4.000 
-2.500 
-4.000 
0.000 

-4.000 
2.500 

-2.000 
2.500 
0.000 
2.500 
2.000 
0.000 
4.000 
0.000 
4.000 
4.000 
4.000 

X *  

150.632 
97.458 

149.290 
97.204 

147.415 
95.390 

252.988 
93.701 

358.680 
171.781 
359.739 
249.319 
361.369 
327.836 
255.629 
406.361 
253.782 
408.177 
409.838 
409.900 

Y *  

80.803 
145.261 
208.382 
239.473 
336.548 
334.558 
337.916 
428.709 
340.171 
430.308 
210.775 
430.779 

83.183 
431.901 

81.922 
433.175 
209.060 
338.498 
243.217 
148.277 

ZW Yw 

3.000 
-3.000 
3.000 

-3.000 
3.000 

-3.000 
3.000 

-3.000 
3.000 

-3.000 
3.000 

-3.000 
3.000 

-3.000 
3.000 

-3.000 
3.000 

-3.000 
-3.000 
-3.000 

0.500 
1.000 
3.000 
3.000 
5.500 
5.000 
5.500 
7.000 
5.500 
7.000 
3.000 
7.000 
0.500 
7.000 
0.500 
7.000 
3.000 
5.000 
3.000 
1.000 

1 20 

.120993E+3,.411295E+3 

.115077E+3..375328E+3 

.726774E+2,.476317E+3 

.4 15888E+Z,.MX)368E+3 

.504322E+2,.55798 1E+3 

-.301645E-2 

-.322721E-2 

-.221632E-2 

-.116770E-2 

-. 157175E-2 

XW YW ZW 

-2.6069 
-2.3825 
-2.5010 
0.1046 
2.5646 
2.4261 
-0.0644 
0.0907 

-3.9232 
-3.9927 
-4.0409 
-3.9886 
-2.0841 
0.0916 
1.8956 
3.8764 

-0.0523 
- 1.6743 
2.1435 

-1.6421 
-1.6106 
-2.2457 
-4.0107 
-3.8112 
0.5280 
3.5135 
0.1048 

0.4851 
2.9751 
5.6634 
5.4948 
5.4542 
3.0117 
0.5228 
2.9220 
1.1577 
3.0225 
5.0558 
6.8306 
6.9759 
6.9183 
6.9429 
6.9144 
0.2531 
2.3499 
2.7955 
4.2972 
5.2847 
5.3452 
3.2154 
6.6089 
6.1541 
6.6301 
6.4305 

3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 

-3.0 
-3.0 
-3.0 
-3.0 
-3.0 
-3.0 
-3.0 
-3.0 
3.0 
3.0 
3.0 
3.0 
3.0 
3.0 

-3.0 
-3.0 
-3.0 
-3.0 
-3.0 

95.65 

j 19 

20 

Maximum Absolute 
xW,yw,zw Errors 

Average Absolute 
xw,yw,zw Errors 

and 

sin D(OurCase I )  + cos DpurCase I )  = D(Ganapathy1 . (29b) 

The ( x  *, y *> and (xw, y w ,  zw) errors of his approach are otherwise 
identical to ours. 

Let us now compare the tolerance of our techniques to noise. 
We use a result of [6]  which states the following: 

Theorem 6.1-3: 
Suppose x , r , x ’, and r ’ satisfy 

( \Ax - blI2 = min, 

r = b - A x ,  

\ ( ( A  + 6 ~ ) x ’  - ( b  + 6b)I\ ,  = min, 

r ’  = ( b  + 6b) - ( A  + 6 A ) x ’ ,  

where A and 6 A  are m X n real matrices with m 1 n , b # 0, and 
6 b is an m element real vector. Assume that 

~ 

.0115942,.0157764,.067 1509 

.0117823,.0176848,.068U95 

.0105744,.0159950..068~3 

.0121288..013 1764,.0680794 

.0108416,.0147754,.0684651 

.00498998..00549650..M82848 

.00576469,.00605661 ,.U281345 

.00508967..00631082,.0280055 

.00558025..00620280,.0282362 

.00541669,.00625791 ,.U280832 

where al(A)  and a , ( A )  are the largest and the smallest singular 
values of A ,  respectively and P ~ ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ ~  is the 2-norm of 
Axleast.squares - b , the minimal 2-norm solution to the least-squares 
problem Ax = b. 

and that 



TABLE V 
(a) INTRINSIC PARAMETER VALUES FOR THE ONE-STEP METHOD OF CASE 2 OF TABLE 11. (b) X *, y * ERRORS FOR THE N PASSIVE POINTS FOR THE ONE-STEP 
METHOD OF CASE 2 ,  TABLE 11. (C) X *, y * ERRORS FOR THE REMAINING 20 - N PASSIVE POINTS FOR THE ONE-STEP METHOD OF CASE 2 OF TABLE 11. (d) 
X w ,  yw, Zw ERRORS FOR THE 27 ACTIVE POINTS FOR THE ONE-STEP METHOD OF CASE 2 OF TABLE 11. (e) DOT PRODUCTS FOR THE ONE-STEP METHOD OF 
CASE 2 OF TABLE 11. (NOTE : THE FIRST ENTRY FOR EACH VALUE OF N IS THE RESULT OF SOLVING (loa), WHILE THE SECOND ENTRY IS THE RESULT OF 

N px,py 

16 .325259E+4,.396128E+4 
,25352 1E+4..309089E+4 

17 .326647E+4,.398283E+4 
.252207E+4,.307428E+4 

18 .322213E+4,.392575E+4 
.242598E+4..294485E+4 

19 .3208OlE+4,.390072E+4 
.203676E+4,.244644E+4 

20 .324626E+4..394914E+4 
.737271E+3,.856160E+3 

X09YO 
N - ,241 776E+2,.664282E+3 

.249703E+3,.776877E+Z 16 
,57297 lE+l,.M3679E+3 
,24389 lE+3..640633E+2 

. 158851E+2..628306E+3 
18 ,238 120E+3..469 103E+2 

.213323E+2,.663663E+3 
.260398E+3,-.352754E+Z 19 

,32657 lE+2..649784E+3 
.239747E+3,.679661E+3 

17 

20 

N 

16 

17 

18 

19 

20 

A v e r a g e  
A b s o l u t e  

x*,y* Errors 

Maximum Absolute 
xw,yw,zw Errors 

.0162692,.0172558,.0628429 
,03335 10,.0248235,.0804603 

.0179098..0178886..0624437 

.0328384,.0255327..0826289 

.0147181,.0162975,.0637086 

.0470818,.M75160,.0933348 

.0144712..0154536..0657424 
.0943310,.0482593,. 121068 

.0157361,.0173190,.0638308 
1.05930,.770761.1.20717 

M a x i m u m  
A b s o l u t e  

x*,y* Errors 

N 

16 

17 

19 

.816316..980756 
1.38975,1.03441 

.813973,1.11053 
1.369 16.1 .07960 

.767269.1.0147 1 
2.12539,1.49851 

.716573..971215 
3,89493.1.83682 

.789722.1.07578 
30.7386.30.4420 

M a x i m u m  
A b s o l u t e  

x*,y* Errors 

.953593,.918077 
4.35140.2.47 148 

.935005,.766244 
4.46457.2.46652 

.852048,.456067 
3.86486,3.08734 

.678259..337824 
4,28133.4.62378 

A v e r a g e  
A b s o l u t e  

x*,y* Errors 

.145054,.308651 

.507534,.36889 1 

.272702,.35 1476 

.533907..360294 

.269617..331737 
,72298 1 A 9 2 7 8  

.314379..305725 
1.55232.1.07120 

.312550..321217 
12.2398.12.2825 

~~ 

N nl n 1,n2* nz,n3* n3 

1,l.l 16 
1.1.1 

17 1.1,1 
1.1.1 

1J.1 18 
1.1.1 

19 L1,1 
1.1,1 

20 1.1.1 
1,l.l 

.559621,.538866 
3.04063,.987077 

.546598,.521107 
3.88574,1.22159 

.574271..319661 
3.82977.2.07200 

.678259..337824 
4.28 133,4.62378 

nl*n~,nl*n3,n~*n~ 

,121702E- 15.0,-. 199493E- 16 
.1139U1E-15.-.433681E-17,0 

.101288E-15.0,-.335561E-16 
.933498E-16.-.780626E-17..277556E-16 

.121864E-15,.138778E-16,-.173472E-16 

.973071E-16.-.346945El7,.2775~E-16 

-.352366~- 17.0.-.806616E- 16 
.715573E-17, .3U16, .27755~-16  

-.902259E- 17J67362E- 18..290566E- 16 
-.693889E-17,.182416-16,-.111022E-15 

Average Absolute 
X ~ , ~ ~ , Z W  Errors 

00590280.00637397,.0296902 
0132804.00804624.0283624 

00637518. 00722737.0296873 
01 393 IS, 00827 182,028 1803 

.005616OCl, 00706280.0291384 
.0161417.00928292.0315290 

00551838,00671034.0287691 
.0306460,0209127.0498809 

.00532212..00727314,.0291270 
.322620..25 1545,.381684 

Then, 

and 

' I r '  - r l ' 2  5 E ( 1  + ~ K ~ ( A ) )  min (1,  m - n )  + O ( e 2 ) ,  (31) 
Ilbl12 

where K ~ ( A )  = al(A)/a,(A),  for u1 ( A )  as above and a , ( A )  the 
nth largest singular value of A ,  where n = rank(A). 

Note that (30) bounds the so-called least-squares error, while 
(3 1) bounds the so-called residual error. 

Assuming that x * and y * are accurate to within 1 /2  of a pixel, 
our calculations show that the bounds on the residual errors from 
both the one-step methods of Case 1 and Case 2 of Table I1 are of 
the same order of magnitude, although the latter upper bound is 

smaller. However, for the least-square error bounds, the one from 
Case 2 is of a lower order of magnitude than the one from Case 1. 
Note that Case 1 covers the methodology used by the Numerical 
Stereo Camera Group and by Ganapathy. For the two-step method 
of Case 2 of Table 11, the error bounds resulting from solving (loa) 
give comparable results to the one-step method of Case 2, while 
the error bounds resulting from solving (lob) give comparable re- 
sults to the one-step method of Case 1. See Table VIII. 

VII. CONCLUSIONS 
We have developed mathematically elegant solutions for the 

general linear (affine) camera calibration problem which are rela- 
tively easy to compute. The procedures presented above are inher- 
ently similar for both the coplanar and noncoplanar cases and sat- 
isfy all necessary constraints. 

In [lo], all rotation constraints are satisfied for his coplanar so- 
lution, but one constraint, $2, . f12 = 0, is not explicitly satisfied 
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Maximum Absolute 
xw,yW,zw Errors N 

16 .0144790,.0152544,.0694297 

17 .0157207,.0182907,.0701896 

18 .0143352,.0171194,.0661368 

19 .0148205..0172846,.065276 

20 .0144452,.0159917,.0651333 

TABLE VI 
(a) INTRINSIC PARAMETER VALUES FOR THE TWO-STEP METHOD OF CASE 2 OF TABLE 11. (b) X *, y * ERRORS FOR T H E N  PASSIVE POlNTS FOR THE TWO-STEP 
METHOD OF CASE 2 OF TABLE 11. (C) X *, y * ERRORS FOR THE REMAlNlNG 20 - N PASSIVE POINTS FOR THE TWO-STEP METHOD OF CASE 2 OF TABLE 11. (d) 

CASE 2 OF TABLE 11. (NOTE:  THE FIRST ENTRY FOR EACH VALUE OF N IS THE RESULT OF SOLVING (loa), WHILE THE SECOND ENTRY IS THE RESULT OF 
x W ,  yw. zw ERRORS FOR THE 27 ACTIVE POINTS FOR THE TWO-STEP METHOD OF CASE 2 OF TABLE 11. (e) DOT PRODUCTS FOR THE TWO-STEP METHOD OF 

SOLVING (lob).) 

Average Absolute 
xw,yw,zw Errors 

.00627972..00509687..0283752 

.00706684,.00611636,.0285385 

,00761 140..00582456..0285222 

,0081 64 1 1 ,.OO592737,.028W 18 

.00804846..0058007 1,.0287 193 

-.233419E+2,.417409E+3 

-.577266E+2..3 15235E+3 

-.148480E+3,.372180E+3 

-.U)4724E+3..357617E+3 

-. 1932 14E+3..438 1 19E+3 

16 

17 

18 

19 

20 

M a x i m u m  

1.69476..881589 

1.0S516.1.06503 

.704355..776075 

(C) 

-.867362E- 18.0.0 
.70473lE-38.-.867362E-18,-.260U)9E- 17 

-.867362E- 18,.416334E- 16,.867362E- 18 
-.853152E-18,.867362E-18,.138778E-16 

-. 102999E- 17,.277556E- 16.0 
.433681E-18,.173472E-17.-.277556E-16 

-39631 IE-18,.138778E-16,0 
.867362E-18,0.-.416334E-16 

-.140946E-17..138778E-18,0 
,37947 1E- 18.0,-2255 14E- 16 

1.L1 
1.1.1 

1 , L I  
1.1.1 

1.1.1 
1.1,1 

1.1.1 
1.1.1 

1.1,1 
1.1.1 

A v e r a g e  
A b s o l u t e  

x*,y* Errors 

1.0341 3..528 106 

1.1625 1 ..500922 

.~73a62,.741914 

.704355,.776075 

N 

16 

17 

18 

19 

20 

nl*n2,nl*n3,nZ0n3 n1*n1,n2*n2,nJ0n3 

1.1.1 

1.1,1 

1.1.1 

1.1.1 

1.1,l 

-.301645E-2,-.37U)98E-15.-.213371E-15 

-.322721E-2..630572E-15,.208 167E- IS 

-.221632E-2..700828E-15,-.372966E-16 

-.11677OE-2,.241127E-14..876035E-16 

., 157175E-2,-. 1627 17E-14,-.119696E-15 

TABLE VI1 
(a) INTRlNSlC PARAMETER VALUES FOR GANAPATHY'S METHOD. (b) DOT 

PRODUCTS FOR GANAPATHY'S METHOD. 

in his noncoplanar solution. How well the constraint equation is 
satisfied by the solution is interpreted as a goodness measure of the 
results [ 5 ] ,  [lo]. Experiments have been performed which show 
the efficacy of our methodology. 

In our approach, one can assume that known constraints are un- 

known and solve the less degenerate problem. We can use the dif- 
ferences with the known constraints as a similar measure of good- 
ness. This is not possible for the nondegenerate case; however, one 
can easily solve for the maximum number of unknowns. The sim- 
plicity of the formalism will facilitate future error and sensitivity 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 12. NO. 7. JULY 1990 67 1 

Least-Squares Error 
Bound 

Residual Error 
Bound 

[7] J. L. Posdamer and M. D. Altschuler, “Surface measurement by 
space-encoded projected beam systems,” Comput. Graphics Image 
Processing, vol. 18, pp. 1-17, 1982. 

[8] I .  Sobel, “On calibrating computer controlled cameras for perceiving 
3-D scenes,” Artificial Intell., vol. 5 ,  pp. 185-198, 1974. 

[9] T. M. Strat, “Recovering the camera parameters from a transforma- 
tion matrix,” in Proc. Image Understanding Workshop, New Orle- 
ans, LA, Oct. 1984, pp. 254-271. 

[IO] R. Tsai, “An efficient and accurate camera calibration technique for 
3-D machine vision,” in Proc. IEEE Conf. Computer Vision and Pat- 
tern Recognition, Miami Beach, FL, June 1986, pp. 364-374. 

16 

17 

18 

19 

20 

,357225 + WlE-9) 

,389803 + WlE-9) 

.395339 + WlE-9) 

.335127 + WlE-9) 

,227335 + W1E-9) 

,0657278 + WlE-9) 

,0659954 + WlE-9) 

,0628752 + q1E-9) 

.0552581 + WIE-9) 

.0449261 + WIE-9) 

16 

17 

18 

19 

20 

, 

Bounds 

.I50126 + WlE-9) 

(b) 

,143571 + W1E-9) 
,352650 + q1E-9) 

,145215 + WIE-9) 
,371023 + WIE-9) 

,170505 +WlE-9) 
,383174 + WIE-9) 

,173474 + WlE-9) 
.373942 + WlE-9) 

,156673 + q1E-9) 
,257355 + WlE-9) 

N I Least-Squares Error 
Bounds 

Residual Error 
Bounds 

,0485381 + WlE-9) 

,0497836 + WlE-9) 

,0492166 + WlE-9) 

.I3468126 + WIE-9) 

,0418054 + q1E-9) 

Residual Error 
Bounds 

.0411035 + WIE-9) 
,0663711 + O(1E-9) 

.0405117 + WlE-9) 
,0648716 + WIE-9) 

,0420885 + WIE-9) 

.0402378 + WlE-9) 
,0628470 + WIE-9) 

.0374909 + WIE-9) 

.OS17886 + WIE-9) 

,0657937 + WIE-9) 

analysis. We see potential use for these techniques in interpreting 
calibration parameters and performing recalibrations with certain 
parameters changing in known ways. 
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Splitting-Shooting Methods for Nonlinear 
Transformations of Digitized Patterns 

Z. C. LI, T. D. BUI, C. Y. SUEN, A N D  Y. Y. TANG 

Abstract-In this correspondence, new splitting-shooting methods are 
presented for nonlinear transformations T: ( 5 , q )  + (x, y )  where x = 
x(c, q), y = y ( 6 ,  q).  These transformations are important in com- 
puter vision, image processing, pattern recognition, and shape trans- 
formations in computer graphics. Our methods can eliminate superflu- 
ous holes or blanks thus leading to better images while requiring only 
modest computer storage and CPU time. The implementation of the 
proposed algorithms is simple and straightforward. Moreover, these 
methods can he extended to images with gray levels, to color images, 
and to three dimensions. They can also be implemented on parallel 
computers or VLSI circuits. 

Theoretical analysis is presented to prove the convergence of the 
algorithms and to provide error bounds for the resulting images. The 
complexity of the algorithms is linear. Graphical and numerical ex- 
periments are given to verify the analytical results and to demonstrate 
the effectiveness of our methods. 

Index Terms-Image smoothing, nonlinear transformations, shape 
transformations, splitting-shooting method. 

I .  INTRODUCTION 
In [4], we provide variant shape transformations 

for images and patterns. All those transformation models are con- 
tinuous, but the image pixels are discrete. Here the question is: 
how can we properly apply the continuous transformations ( 1 . 1 )  to 
image transformations? One trouble is that some superfluous holes 
and blanks occur in the transformed images even for simple cases 
such as dilations and rotations. The innovative techniques in Lee 
et al. [3] are presented to handle this problem, but they are, un- 
fortunately, confined to linear transformations only. In this corre- 
spondence we study nonlinear techniques defined by ( 1 . 1 ) .  Our ap- 

Manuscript received May 23, 1988; revised December 13, 1989. Rec- 
ommended for acceptance by 0. D. Faugeras. This work was supported in 
part by the Natural Sciences and Engineering Research Council of Canada, 
by the Fonds pour la Formation de Chercheurs et I’Aide i la Recherche of 
Quebec, and by the Ministere de I’Enseignement Superieur et de la Science 
(Action Structurante). 

The authors are with the Centre de Recherche Informatique de Montreal 
and the Department of Computer Science, Centre for Pattern Recognition 
and Machine Intelligence, Concordia University, Montreal, P.Q. H3G 
1M8, Canada. 

IEEE Log Number 9034374. 

0162-8828/90/0700-0671$01 .OO O 1990 IEEE 


