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Abstract

The relationship between the three-dimensional coor-
dinates of a point and the corresponding two-dimensicnal
coordinates of its image, as seen by a camera, can be
expressed in terms of a 3 by 4 matrix using the homogene-
ous coordinate system. This matrix is known more gen-
erally as the transformation matrix and can be determined
experiment2ily by measuring the image coordinates of six
or more knuwn points in space. Such a transformation can
also be derived analytically from knowledge of the camera
position, orientation, focal length and scaling and transla-
tion parameters in the image plane. However, the inverse
problem of computing the camera location and orientation
from the transformation matrix involves solution of simul-
taneous nonlinear equations in several variables and is
considered difficult.

In this paper we present a new and simple analytical
technique that accomplishes this inversion rather easily.
This technique works very well in practice and has consid-
erable applications for motion tracking.

1.0 INTRODUCTION

It is well known that the two dimensional image
coordinates of the image of a point in space, as seen by a
camera, can be conveniently expressed in terms of a 3 by 4
matrix using the homogeneous coordinate system. Roberts
[1] provides a good treatment of the homogeneous coordi-
nate system and its use in obtaining this transformation
analytically. Such a transformation is variously referred to
in the literature as camera calibration matrix [2] or per-
spective transformation matrix [3] or more simply as the
transformation matrix. Properties of the transformation
matrix and techniques for deriving this matrix can also be
found in Duda and Hart [4] and Haralick {3] . Haralick {3]
provides a good review of the properties and the uses of
this matrix for several reconstruction problems in com-
puter vision. This transformation matrix can also be
determined experimentaily by observing the images of six
or more known points in space and doing a least-square fit
solution for the resultant system of overly constrained
linear simultaneous equations. Sutherland [5] provides the
actual equations and a method of solution. Sobel [2]
discusses the problems and errors involved in the
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experimental determination of a camera calibration matrix
and proposes a method of improving accuracy of calibra-
tion.

This matrix has considerable applications in the
fields of computer grapiics and computer vision. Rogers
and Adams [6] is a good source for applications in com-
puter graphics and Ballard and Brown [7] for applications
in computer vision. The determination of this matrix is
the starting point for several problems in the area of com-
puter vision - in particular stereo reconstruction [8, 9, 10],
guiding unmanned vehicles {11], dynamic scene analysis
[12, 13], to name a few. In all these applications, deter-
mination of the camera location and orientation from
measurements on two dimensional images is very useful
and sometimes necessary. Yet, even though the problems
of camera calibratiocn and determination of this matrix has
received considerable attention in the literature, the prob-
lem of camera location determination has been given rela-
tively little attention except in the field of photogrammetry
where Church’s method [14] fo. desrmination of camera
location and orientation from krowiedge of the focal

i
length of the camera and three points it space and their
corresponding images is well known [15]. However,
Fischler and Bolles [16] claim that little is known about
the conditions under which one can obtain unique solu-
tions and the minimum number of image points needed for
unique solutions. Subsequently, Ganapathy [17] provided
a complete treatment of the minimum number of points
needed for unique solutions for several classes of problems
involving partial/no knowledge of camera parameters.

Here we are concerned only with the inverse prob-
lem - namely given a transformation matrix, determine the
camera location, orientation, scaling and translation
parameters in the image plane from it. Some research has
been done in this area by Binford and his colleagues at
Stanford university and the reader is referred to papers by
Gennery [10] and Lowe [18] for their approach to this
problem. This inverse problem is equivalent to the follow-
‘ag problem: given a photograph that has been enlarged
both horizontally and vertically (possibly different scales in
the two directions) and clipped arbitrarily, determine the
position and orientation of the camera used to take the
picture from knowledge of the correspondences between
known objects and their images in the photograph. Any
formulation of this problem results in a set of nonlinear



simultaneous equations in several (at least six, depending
on the formulation) independent variables and hence the
methods that have been proposed are iterative in nature
and use hillclimbing or other weli known numerical tech-
niques for solution. Closed form solution to this problem
is considered difficult and I quote (from pp. 123 [13])
"However, because of problems in calculating a rotation in
terms of its three underlying parameters, there appears to
be no straightforward symbolic solution to the problem,
and we are forced to seek an iterative solution”.

In this paper we derive a new and simple non-
iterative analytical technique that solves the camera loca-
tion determination problem. However, in order to do
that, it is necessary to represent the transformation matrix
in a different way than is conventional and we derive such
a representation in the next section. With this new
representation, the inverse problem can be stated suc-
cinctly. We present the problem statement in section 3 and
briefly describe the rationale behind the new technique.
The section also addresses some misconceptions regarding
the degrees of freedom in the specification of a transfor-
mation matrix. The properties of a pure 3 by 3 rotation
matrix play an important role in the analytical solution and
hence they are covered in section 4. With these develop-
ments behind us, we are ready for the solution which is
surprisingly simple! This is presented in section 5 for an
ideal transformation matrix with no errors in it. In section
6, we present a modified version of the same algorithm to
handle a real transformation matrix with possible errors in
it. Finally, in Appendix B, we illustrate our solution tech-
nique on a transformation matrix, obtained experimentally
[19].

2.0 DERIVATION OF THE TRANSFORM MATRIX

Familiarity with the homogeneous coordinate system
is necessary to understand the details of the derivation. In
such a system a three-dimensional point x, y, z is
represented by a 4-tuple wx, wy, wz, w by adding an extra
scalar w. To obtain the three-dimensional coordinates of a
point represented in the homogeneous coordinate system
one merely divides by the last component of the 4-tuple.
Similarly, a two-dimensional point u, v is represented by
wu, wv, w and we divide by the third component w to
obtain 4 and v. This representation is useful in obtaining

perspective transformations and the reader is referred else-
where for more details [1, 6].

Consider a camera center S located at X, Y, Z,
(measured in the X, Y, Z coordinate system) looking along
a line of sight SO'P. P is the point at which the line of
sight pierces the X—Y plane and O’ is the point at which
the line of sight intersects the image plane (see figure 1).
Let S'P represent the projection of SP on the X~—Y plane.
We can transform the x,y, z coordinates of a point to
x',y,z coordinates by choosing an X'Y'Z’' system of
axes centered at § in three steps as follows:
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FIGURE 1 — CAMERA GEOMETRY

2.1 STEP1 (MOVE ORIGIN)

First move the origin from O to § leaving the axes
the same. This can be accomplished with a displacement
matrix D and can be represented as a 4 by 4 matrix in the
homogeneous coordinate system. D is given by

1 0 0 -x
0 1 0 -v,

b=1001 -z
c 0 0 1

2.2 STEP2 (PAN)

Rotate the X-Y plane around the Z axis by an
angle 6 such that the new Y axis is parallel to §’P and is in
the same direction as §'P (sece figure 1). Note that § can
be between —w and +ar. If we take the positive direction
of rotation in the conventional sense namely X to Y the
transformation matrix (say R1) is

cosd sing 0 O
Rl — |~sin® cos6 0 0
0 0 10
0 0 01

2.3 STEP3 (TILT)

Step 2 gives us a new X axis, a new Y axis and
leaves the Z axis intact. Now rotate the new Y—Z plane
around the new X axis by an angle ¢ (see figure 1) to
align the Y axis with SP. The positive direction of rota-
tion is once again from Y to Z as shown in the figure. It

is important to note that ¢ is between —"21 and +—“2~. This



will be used later in the decomposition process. The

transformation matrix R2 that does this is
1 4] 0 0

Ry = |0 cosd sind 0
0 -—sind cosd O
0 ©0 0 1
2.4 STEP4 (SWING)

Now we obtain a camera centered coordinate system
with the new Y axis aligned along the line of sight and
pointing towards the image plane at a distance F from the
camera center S. The projection of the X’ axis and the Z’
-axis on the image plane is shown in figure 2. However
the image coordinates of an image point may be measured
with respect to U—V axes (direction unknown) centered
at the image origin 7/ (location unknown) as shown in fig-
ure 2. We can transform the X'—Z' axes by rotating
around the Y’ axis by an angle ¥ such that the new X’ axis
is aligned parallel to the U axis. This will leave the new
Z' axis either aligned in the same direction as the V axis
or parallel to it but in the opposite direction. It is impor-
tant to note however that § can be chosen so that the new
X' axis is in the same direction as the U axis. The matrix
R3 that accomplishes this is

cosy O ~—sinp O
R3 = 0 1 0 0
sing O cosyp O

0 0 0 1

We will name the resultant coordinate system the
image centered coordinate system. The image plane itself
is at y F. The coordinates x',y",z' of a point
x, ¥, z (in world coordinates) is given by

|-+

where EXT is a 4 by 4 transform matrix given by
EXT = [R3][R2] [R1][P] = [R][D]

If we write R as

] a b c 0
_ld e f O
[Rj “lg i O
0 001
then
a b c p
[EXT] =4 ¢ f q
g h i r
0 01
where the nine parameters q, b, c, d, e, f,g,hand i are
given by
a = cosy o5 — sind sind siny (2.1)
b = cos\ sin@ + cosf sind sinys 2.2)
¢ = —cos¢ siny 23)
d = —sin® cosdp 2.4)
e = cos cosd (2.5)
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[ = sing (2.6)

g = cos® siny + sind sind cosy 2.7

h = sin® simy — cosd sind cosy 2.8)

i = cosd cosys 2.9

and p,q,r are expressed in terms  of
a’b,C’d’e7f9g’h,ias

p = —aX,—bY —cZ, (2.10a)

q= —dX.—eY.—fZ, (2.10b)

r= —gX.—hY —iZ, (2.10¢)

Now to convert the camera-centered x', y’, 2z’ coor-
dinates to image-centered u, v coordinates on the image
plane we take the following steps (step 5 through 7)

2.5 STEP 5 (PERSPECTIVE)

Obtain the x'’, z’’ coordinates of an image point by
the perspective transformation as follows

2.6 STEP 6 (RASTERIZATION)

To convert the measurement units to image units {to
rasterize for example), scale by k, in the X'’ axis and k,
in the Z'" axis. Note that k, is always positive. k, may
be positive or negative.

2.7 STEP 7 (MOVE IMAGE ORIGIN)

Translate the origin to I. If the coordinates of O’
are up and vy in the U—V system then combining steps 5
through 7 we get
kx'F
u = + -
= y

k,2’F

Yy

and v =y +
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FIGURE 2 - IMAGE PLANE GEOMETRY



Using the homogeneous coordinate system this can

be written as
u x
i - el 2
1 z
1
where INT is a 3 by 4 matrix whose components are
k,‘F Uy 0 0

0 Vo ka 0
0 1 0 0

Note that if we denote k,F by k; and £,F by &, in
the 3 by 4 matrix INT there is no reference to F at all. In
fact the focal length F is not recoverable from any meas-
urements of image coordinates. We will show that k; and
k, are indeed recoverable but F by itself is not, nor are k,
and k,. Thus we can represent the whole imaging process
by a 3 by 4 matrix T known as the transformation matrix
which expresses the relationship between image coordi-
nates and world coordinates as follows

- B

[r] = [NT] [EXT]

INT is expressed in terms of 4 parameters ky, kj, ug
and v, and EXT is expressed in terms of the six parameters
X,Y,Z,8,¢and .

1Y)

and

3.0 DECOMPOSING THE TRANSFORM MATRIX |
the components of the transform

Let us represent

matrix T by tyy, tp eeee 133y B34 These can be also be
expressed as’
tll = kla + uod
t12 = klb + Uge
t13 = klc + llﬂf
ta = kyp + ug
) = kqg + vod
Iy = kzh + vge
ty3 = kyi + vof
ty = kr + viq
3 = d
132 = &
ty=f
= q

Note that if all terms of the transformation matrix T
were scaled by the same amount (say dividing by ¢), no
change occurs in image coordinates because of the use of
the homogeneous coordinate system and -the subsequent
division by the third row to get # and v . Thus it can be
given in terms of eleven ¢; with 734 set to 1. The problem
we wish to address involves decomposing this matrix to
arrive at kl’ k2’ Up, Vo, Xc: Yca Zc; 9, ¢ and ‘b- One way
to look at it is that we are given eleven equations express-
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ing eleven ¢; in terms of sixteen unknowns ky, k;, uy, v,
X.,Y,Z,a,b,c,d, e, f, g, h and i. However, it is
easily seen that the nine unknowns a, b, ¢, d, e, f, g, h
and i can be specified in terms of the three unknowns 6, ¢
and ¢. Therefore we really have eleven equations in only
ten unknowns(!) which means we have an overconstrained
system of equations. However expressing a, b, ¢, d, e, f,
g, h and i in terms of 6, ¢ and ¢ is not only messy but
makes the decomposition algorithm harder to understand.
Hence we will take the following approach: We will leave
it in terms of sixteen unknowns but impose additional (6)
constraints to force the nine components a through i to
form a 3 by 3 pure rotation matrix.

It is worth noting that there are only ten degrees of
freedom associated with a perspective transformation
matrix. The six degrees of freedom associated with camera
location (3) and camera crientation (3) are obvious. The
other four consist of two for scaling and two for location
of origin in the image plane. If we measure the image
coordinates directly on the image plane then the two
degrees of freedom associated with scaling do not exist.
Further if we assume the origin of measurement is 0’ (the
principal point on the image plane) then the degrees of
freedom are reduced by two more to a total of six. Thus,
in principle, we can solve for camera location and orienta-
tion from knowledge of three points and their correspond-
ing images. In such a case we obtain six equations, two
for each correspondence. However, since the resultant
equations are polynomials of at least the second degree, in
general we get multiple solutions. But it so happeas that
if we know four points on a plane and their corresponding
images (as measured directly on the image plane with no
scaling) then we can uniquely locate the camera position
and orientation.

In this paper we are interested in a general solution
with no restrictions. Since we have ten independent unk-
nowns, we need ten independent equations. It is generally
believed {5, 7, 16 etc] that a minimum of six points and
their corresponding images are needed to determine the
transformation matrix 7 uniquely. The argument made is
that there are eleven independent components in the
matrix T and hence that we need at least eleven equations.
It is true that there are eleven components in the transfor-
mation matrix T but not all eleven can be independent
because, as we have shown, the eleven can be expressed in
turn using a maximum of only ten independent variables.
Thus given an experimentally obtained transformation
matrix, because of errors in the terms ; of the matrix, we
can obtain different solutions depending on which ten of
the #; we choose to use. Hence we will first develop an
analytical technique of solution for the case with no errors
in the terms 1; and then modify it for application in prac-
tice. In the next section we describe the properties of a
pure rotation matrix which are used in the development of
the algorithm.



4.0 PROPERTIES OF THE ROTATION MATRIX

Let R be a 3 by 3 rotation matrix expressed as

R=1}d e f
h i

A pure rotation matrix R must be a
matrix” [20]. Hence it follows that R

a d g
Ri=1b e bk
c f i

This property along with the property that the determinant
of R must be unity implies the following constraints

E+bl+l=l+l+f=g+ R +{=

"Proper orthonormal
~1is RT and is given

i=ae—bd g=bf—ce h=cd—af

a=e —hf b=fg—di c=dh—eg

d=hc—bi e=ai—gc f=bg—ah
ad +be+¢f=dgteh+fi=ag+bh+ci=0

Obviously not all of these are independent. The
interdependence can be recognized from the following
algebraic identity

(ad+be+cf Y = (@2 +b*+c?) (d*+e2+f2)
— (ae—bdy® ~ (cd—af? — (bf —ec)’
Thus if we choose the 6 constraints to be

F+b+F=1 (C1)
E+e+f2=1 (C2)
grr+i= (C3)
i=ae — bd (¢4
h=cd — o (CS)
g=bf —ec (Co)

they are sufficient to derive the other constraints we need
namely

ad + be + ¢f = 0 {07}
gd + he +if =0 (C8)

In the next two sections we will use these to decompose
the matrix first assuming that there are no errors in f;
terms and then with the realistic assumption that there are
errors associated with the terms of the matrix T .

5.0 THE IDEAL CASE DECOMPOSITION

First we will give an outline of the technique and
then the details.

5.1 SOLUTION QUTLINE

131, f3p, t33 will be used to solve for the three unk-
nowns 6, ¢ and g. Once we know these, the six terms #,;,
a5 $135 B21, Ty, fp3 Can be expressed llSillg only five unk-
nowns ky, ks, ug, vy and . Further ¢4, #, and #;3 can be
expressed using only &y, ¥y and ¢ and similarly #,,, 5, and
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t;; can be expressed using only k,, vy and ¢. Thus it is
possible to compute kl, up and l'l from 11, to and 13 and
use the value of ¢ and only two out of the three #;, %
and 2,3 to compute k, and vy. The fact that we need only
five out of these six terms is a consequence of having
eleven #; but only ten independent variables. Finally #;4
can be used to compute p and £, can be used to compute
r. Knowing p, ¢, r and 6, ¢, ¢ we can compute X, ¥,
and Z_.

5.2 SOLUTION DETAILS

Let us consider the sum
G+ 6+ 5
Since we bave normalized all #; by dividing by #;, we have
e f

I = — I3 =
q’ q

133 = —,
3177
Therefore, we get (using C2)

2 L2 -
G+ 5+ = 7

Assuming q is positive (refer to Appendix A) we obtain q
and bence d, € and f.

Let
A3 = 13345 A = g, A3 = Ing
and
A1 =ty — oy
Hence
kg + uyd . 5 lc1b+uoed2
nT — _— T4 - ————4g
q q q q
=k1(ae—bd)=k1i
Similarly if we let
Ay = tiohas — ks
and

A3 = i3k — fyhas
then it can be seen that
Ap =kg and N3 = kh
Squaring and adding we get (by using C3)
M+t H A= @+ 82+ ) =8

Thus we obtain k} and hence k; (remember that k, is
positive). Knowing k; we now obtain i, g and k& from
A1, App and Ag3. Since we know i, g and h, using any
two terms from 2,1, #; and ty; (say #; and t,,) we can
obtain k; and v, (see equations for #; in section 3). Note
that one of the terms among #,,, t,; and t,5 is redundant in
the ideal case. That is to be expected considering that we
only need ten equations to solve for the ten unknowns and
we have been given eleven ¢;;.



Using d, e and f (obtained from t3, #3, 33) and
the just obtained g, » and i we can compute a, b and ¢
(using equations for @, b and ¢ in terms of d, ¢, f, g, k
and i in section 4). Using any of these three (say a ) from
t;; we obtain u,. Using u; and k; in #;, we compute p .
Similarly using v, and %, in #,, we can compute r .

Since f = sing and ——“le¢s+—“21, we know ¢.
Since e = cosf cosd and d = —sinb cosd, from d, e and
¢ we obtain cosd and sin® and hence 6. Similarly since
¢ = —cosd simp and i = cos¢ cosy from ¢, i and ¢ we
obtain ¢.

So far we have computed &, k;, ug, vo, 8, &, ¥, p,
g and r. The three X,, Y, and Z, can be obtained using
the following equations :

X, = —ap —dq — gr
Y, = —bp —eq — hr
Z,= - —fg~ir

Thus it is possible to analytically compute the ten
unknowns using 11, #13, f13, f14> %4, f31, 33, 133 and any
two from #,,, #), and £,3. In much the same fashion we
could have used 1y, 3, %3, t245 t4s t315 132, 133 and any
two from t,;, #;, and #;3 to compute the same ten parame-
ters by first computing k;, then a, b and c, then &, and u,,
then vg and p and r . It should be emphasized here that
we really need only ten of these eleven 7; and if we are
given all eleven #; of a transformation matrix the problem
is harder to solve because the system is overconstrained.

In the next section we describe an extension of this tech-
nique which obtains the ten parameters using all eleven ¢;.

6.0 DECOMPOSITION SOLUTION IN PRACTICE

In an actual case all terms ¢; have errors in them.
One possible solution would be to discard any one of the
SiX #5, 1, t3, by, txp and 3 and using the other five and
t14s Lu 131, txp and 133 solve for the camera parameters.
Thus we obtain six different solutions and either we have
to average them or obtain a solution from these six by a
least-square fit or averaging or some such technique. Not
a very satisfying solution! Instead let us do the following.
We have sixteen unknowns and eleven equations with six
constraints on the terms @, b, ¢, d, e, f, g, h and i. From
symmetry considerations there is no preference for drop-
ping any one of £y, tp, 413, fy1; fp, B3 OVer the other
five. Therefore let us not drop any! Instead we will relax
the requirement that the terms a through i form an ortho-
normal matrix. This will be done by using five constraints
instead of six by dropping one of the six constraints. But
which one?

Let us examine the solution for the ideal case care-
fully. As before, we obtain ¢ and hence d, ¢ and f from
t31, 3 and t;;. This requires the use of the constraint

d2+e2+f2=1
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Define

M Ay and A
as before and thus we obtain
k(ae—bd), ki(bf—ce) and k(cd—af)
Let us denote

(ae—bd) by i, (bf—ce) by § and (cd—af) by h

Because of errors, these are not equal to i, g and h respec-
tively but still

i~i, g=§ and h=h

Let us use the following three constraints (one of
these has already been used to obtain d, e and f)

ad+be+c¢f=0 and & +b>+c*=1 and d*+e*+f2=1
These together imply (using the algebraic identity in sec-
tion 4)
g+ =1
and using these we obtain k; from
Ay AL+ = K (PR P) = |

and y; from
\2

(k1
(4]

2
£+t +12 (@+b%+c?) + [—u9—] (d®+e2+1%)

q
ki) [uo
AT W
Zﬁz{ﬂﬂ
la) |a

q
Thus we obtain k; (since k; is positive) and using that the
magnitude of ¥, but not its sign. Similarly if we denote
(as before)

+

A1 = BAn—ipA3, Ap = fphay—lnAn

and
A3 = fr3h3 —121A33
we obtain
Ay = ky(ge—dh) = —k)¢ , £=c
Ay = k(fh—ei) = ~k,d , G<a
A3 = ky(id—fg) = kb , b~b

We will now impose two more constraints in a similar
fashion. They are

dg+eh+fi=0 and g+r+i¥=1
These together imply
E+P+& =1
and thus squaring and adding we get
Mitah N = B



and

k 2 v 2
g - (2] + [

q

Thus we can obtain the magnitudes of both &, and v,
but not their signs. However using the approximate values
g for g or h for h or i for i and substituting that in the
equation for #,; or &, or 3 (from section 3) we can deter-
mine the signs of %, and v,. Similarly, using either the
approximate value of ¢ for a or b for b or ¢ for ¢ we can
obtain the sign of u,. (For this technique of determining
signs to always work correctly, even in degenerate cases,
care has to be exercised regarding the choice of the term
for computation. One has to choose the term that has the
maximum variation in magnitude when the sign of a vari-
able in question is changed.)

Knowing the values of k;, k,, uy and vy, we can use
the expressions for #1, 12, t13, t14» t21» f23, fz3 and £y, tO
calculate the values for a, b, ¢, p, g, k, i and r respec-
tively. We now have the values for a, b, ...., i and also
the values for p, ¢ and r. Using equations (2.10a),
(2.10b) and (2.10c) we can compute X, Y, and Z.. Using
equations (2.4), (2.5) and (2.6) for d, e and f we can
compute the angles 8 and ¢ (as before). We can now use
either the set of equations (2.1), (2.2) and (2.3) for a, b
and c.or the set of equations (2.7), (2.8) and (2.9) for g,
h and i to compute the angle ¢. However, because of
experimental errors, the values obtained in the two cases
will in general be different. We could solve for both
values and take their average to be the value for :b. The
difference between the two values is a measure of the con-
sistency of the transformation matrix. Ideally it should be
zero. It is possible to explain this deviation by assuming
that the the two image axes U and V are not perpendicular
to one another but that the two axes deviate from the per-
pendicular by an angle 5 [21]. To summarize we have
used all six 11, Y1y 13, D215 12 and I3 but used only the
following five constraints

@+b+c? = d+el+ff = g+t = 1
and
ad+be+cf = dg+eh+fi = 0

Note the symmetry in the choice of constraints. The con-
straint that we have not used is

ag+bh+ci =0

In fact we will compute ag+bh+ci to evaluate the con-
sistency of the eleven given #;. It can be shown that the
magnitude of this value should be the same as the magni-
tude of sin & [22]. The visualization of 8 as the skew
angle is a convenient way to characterize the errors in the
system. The closer it is to zero the less the errors in ;.
(See Appendix B for an example.)

7.0 CONCLUSIONS

We have arrived at a very simple non-iterative algo-
rithm for decomposing any given transformation matrix
inio the various camera parameters that constitute the
components of the matrix. We have implemented the
above algorithm as a C program running under the UNIX
environment. The program has been tested cxtensively and
performs well when given real data as well as erroneous
and degenerate data.
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APPENDIX A

We have tacitly assumed that g is always positive.
Clearly when the camera is looking towards the origin g is
positive. However, when the camera is looking away from
the origin, g is negative. In such a case if we consider the
image plane to be at a distance F from the camera but in
the opposite direction (see figurs 3), then ¢ can be made

positive. Mathematically this inversion can be accom-
plished as follows:
If ¢ is negative, let g’ = —¢q so that ¢’ is positive.

Now if let A;; = —t; then we get a new transformation
matrix in which all terms have changed sigas. In particular
now A3 = —q = q' and is positive. The A;; can be writ-
ten as

8’ 6
Y ORIGIN OF
' MEASUREMENT ¢
L4 L4
x" "
< | F - -
Y V\v
CAMERA x’
CENTER
pe v
u

FIGURE 3 ~THE TWO PLANES ARE ON THE OPPOSITE
SIDES OF THE CAMERA CENTER. THE
ANGLES ARE RELATED BY 3’=9+1r,

¢'=-¢ AND y'=-y

My = ~kja — ugd = ky (—a) + uy (—d)
Np = —kib — uge = k; (—b) + ug (—e)
A3 = —kic — uof =k (—¢) + up (—f)
Mg =—kip—uqg =k (-p) tugq’

My = —kg —vod = — ky (g) + vy (—d)
X22 = "'kzh - Vo€ = — kz (h) + Vo (—e)
A3 = —kyi = vof = — ky (i) + vo (—f)
My =—kr —veg =~k () +vq

Ay = —
Ap = —e
Ay = —f
Ay = ¢

In this new matrix ¢’ is positive. Note carefully that
this change was accomplished by changing the signs of a,
b, c, d, e and f and k,. The signs of g, h and i were not
changed. This is necessary to assure that the rotation
matrix is a "proper orthonormal" matrix. If we were to
change the signs of all components, the determinant will
also change sign and the matrix will no longer be
"proper”. This change in two rows of the matrix is
equivalent to 6’ = 6 + @, ¢’ = — & ¢’ = — . That this
is indeed so can be verified from figure 3. Thus it is valid
to assume that ¢ is always positive. In fact, without loss of
generality, it is possible to assume that any two among the
three k,, k, and g are positive.



APFENDIX B

Given below is an experimentally obtained 3 by 4
transformation matrix
~2.3819E+00 +4.9648E~01 —3.9462E —02 +8.4740E+02
~4.3897E 02 —6.2872E—02 —2.4071E+00 +8.8291E 402
~2.6388E —04 —6.2759E —04 —7.1843E-0S5 +1.0000E+C0
Let us apply the algorithm in section 6 to the above
example. From

ty; = —0.2638782E—-03, 15, = —0.6275908E—03
and
133 = "0.7184327E"‘04
we get
1

g=(5 + 5 + t3,)? = +1.460728E+03

A = +3.469129E4+03 = k; 1

App = —1.289543E+02 = K, £

A3 = —3.420078E+02 =k h
Thus

A2, + 2% +aE = +1.216907E+07 = K}
Since k; is known to be positive we get

k; = V{1.Z16907E+07) = 3.488420E +03

and
kY 2
B + 6, + th = +5.921379E+00 = {j} + E‘i}
Hence

up = * 6.823031E+02

Computation of Xy, Ay and Ay yields

)«21 = +2.338259E+01 = _'kz ¢

Ny = —3.213798E+03 = —k, &

K23 = +1.348604E+01 = "‘k2 b
Hence we get

A3 + A, + Aj; = +1.214778E+07 = k3

and

2 2
v,
B+ + = +5.500260E+00 = [5;_] + [_01

q

Therefore

+ 3.485366E+03
and

vp = * 4.779105E+02
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We also know that

d = gt3q —3.854530E—01
= gty = —9.167364E-01
f = qt;3 = —1.049431E—-01

Since i has the largest numerical value among 3, &
and 7, using the expression

k2i + Vof

and using the approximate value 7 for i and using the just
obtained value for f we determine the signs of k, to be
negative and v, to be positive. Similarly since & has the
largest numerical value among &, b and ¢ using the
approximate value & for a and the expression for #;, we
determine the sign of uy to be positive. Thus we have
determined &y, &,, #y, v, d, ¢ and f in both magnitude
and sign. The signs of a, b, ¢, g, h and i are known but
we have only approximate values for the magnitudes.
Using the expressions for ¢4, and 2, we calculate p and r
to be

p = +6.913188E+01
r = ~1.697378E+02

Now that we know k;, k,, u; and v, exactly, the exact
values of a, b, ¢, g, # and i can be determined from the
values of #;;, ¥y, #13, 521, £ and #3. These values can
now be computed and they are shown below along with
the approximate values and the difference (magnitude)
between the two values

a= —9.2198E~01 d=
b= +3.8720E~01 b=
c= +4.0016E~03 &

—9.2208E—-01 dif= 9.7212E—05
+3.8693E—01 dif= 2.6902E—04
+6.7087E-03 dif= 2.7671E-03

g= —3.4455E~02 g= —3.6965E-02 dif= 2.5099E—03
A= —99352E-02 h= ~9.8298E—~02 dif= 1.0536E—03
i= +9.9445E-01 i= +9.9447E-01 dif= 1.4%9E—-05

The values of d, e and f obviously are not affected.
These nine values do not form an orthonormal matriz.
(However, the nine values &, b, é, d, e, f, £, h and { do
form a proper orthonormal matrix.} They do satisfy the
five constraints

PP+ =L+ +fP=g+P+L=1
and
ad + be +cf =gd + he + if = 0
but the sixth constraint
ag + bk + ci

has a value of —2.722193E—03 instead of zero. This
corresponds to a skew angle 8 of approximately 0.156 (in
degrees). This is a very small deviation and is consistent
with the fact that the transformation matrix is quite accu-
rate.



Knowing p, ¢ and r we can now compute X, ¥, and
Z tobe

X, = +6.209344E +02
Y, = +1.295476E+03
Z, = +3.218140E+02

From the values of a, b,... i we can compute the
angles (in degrees) to be

6 = +1.571951E+02
¢ = —6.023912E+00
Y = +3.596915E +02

¢ is the average of the two values (see section 6).
These have been verified to be close enough to the actual
values and as a check we have given below the transfor-
mation matrix that would be obtained if we used the
results of camera location, orientation, scaling etc to
recompute the transformation matrix.

—2.3820E +00 +4.9616E—01 —3.6230E -02 +8.4795E +02
—4.0902E —-02 —6.4130E~02 —~2.4072E +00 +8.8314E+02
—2.6388E ~04 —6.2759E —04 —7.1843E —05 +1.0000E +00

A comparison of this matrix with the input matrix
indicates reasonable agreement in values and confirms that
the technique is computationaliy robust in the presence of
errors in the terms of the transformation matrix.
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