
AbStmCt 

The  relationship between the threedimensional COM- 
dinates of a point and the mraponding two-dimensional 
coordinates of its  image, as seen by a  camera, can be 
expressed in terms of a 3 by 4 matrix using the  homogene- 
ous coordinate  system. This matrix is known  more  gen- 
erally as the transfamation matrix and can be determined 
experiment.dy by measuring  the  image mrdinates of six 
or more km;m phts in space. Such a  transformation am 
also be derkw analytidy from knowledge  of  the  camera 

'tion, Orientation, f d  length  and  scaling  and  transla- 
parameters in the  image  plane.  However,  the  inverse 

problem  of  computing the camera  location and orientatiorm 
from  the  transformation  matrix  involves  solution of simul- 
meous nonlinear equations in several  variables and is 
considered  difficult. 

In th is  paper  we p s e n t  a new and  simple araalgrpid 
technique  that  accomplishes &is inversion  rather easily. 
This technique  works  very  well in practice and has msid-  
erable  applications  for  motion  tracking. 

1.0 ODUCrnON 

It is well h o r n  that the two dimensional  image 
coordinates of the  image of a point in space, as seen by a 
camera, an be conveniently  expressed in terns of a 3 by 4 
matrix  using the homogeneous coordinate  system. Roberts 
[l] provides  a  good  treatment of the homogeneous  coordi- 
nate  system  and its use in obtaining this transformation 
d y t i d y .  Such a  transformation is variously  referred to 
in  the  literature as camera  calibration matrix [2] or pea- 
spective  transformation  matrix 131 or more  simply as the 
transformation  matrix. Properties of the  transformation 
matrix and  techniques  for  deriving this matrix an also be 
found in Duda and Hart [44 and Maraaick [3] . Haralick [33 
provides a g d  review of the  properties  and  the uses of 
this matrix  for  several reconstruction problems in wm- 
puter vision. This transformation matrix can also ke 
determined  experimentally by observing the  images of six 
or more known points in space  and  doing  a  least-square  fit 
solution for the  resultant  system of overly constrained 
hear simultaneous  equations.  Sutherland [SI provides  the 
actual equations  and  a method of solution.  Sobel [2j 
discusses the  problems  and  errors  involved in the 

exprimental determbation of a camera calibration matrix 
and prqxws ,a method of improving  accwacy of d b r a -  
tion. 

'wis matrix  has  cmsiderabble  applications in the 
fields of m p u t e r  grapbks an% wmputer  vision.  Rogers 
and [6] is a gmd source for  applications in can- 
p t e r  gr@ia md bUard md Brown [7] fm applications 
in  ision. glae determination of this matrix is 
the int for  several problem in ,the area of am- 
puter vision - in p a r t i c u l a r  skreo reconstruction [$, 9, IQ]? 
guiding wannd vehicles [Ill, dynamic  scene  analysis 
[la, 131, to name  a  few. In all these  applications,  deter- 
mination of the camera l o c a t i o n  and orientation  from 
measurements m two dimensional  images is very w € u l  
and  sometimes  necessary.  Yet,  even though the  problems 
of' camera  calibration and  determination of this matrix has 
receivedl considerable  attention in the  literature,  the prob 
l a  of camera laxtion determination has been given  rela- 
tively little  attention  except in the  field of photogrammetq 
where Chwch9s method [14j f a  &: mination of camera 
location  and  orientation frcm k : A z 3 g e  of the f d  
length of the amera and three pints mL space and their 
mesgonding images is well  known e1.51. Hmever, 
fischler and B o U a  [I61 claim  that  little  is known about 
&E conditions under which one can obtain uraique soh- 
tims and the minimum number of image pints needed for 
unique  solutions.  Subsequently,  Ganapathy [lq provided 
a  complete  treatment of the minimum number of points 
needed for  unique solutions for several  classes of problems 
involving partidno knowledge of camera  parameters. 

Here we are concerned  only with the  inverse prob 
lem - namely  given  a  transformation matrix, determine  the 
camera  kxation,  orientation,  scaling and  translation 
parameters in the  image  plane from it. h e  research has 
k e n  done in this area by Binford and his colleagues  at 
Stanford university  and  the  reader is referred to papers by 
Gennery [IO] and h w e  [1$] for  their  approach to this 
problem. This inverse  problem is equivalent to the  follow- 
'-lg  problem:  given a photograph  that has been  enlarged 
both horizontally and  vertically  (possibly  different  scales in 
the two directions)  and  clipped  arbitrarily, determine the 
p i t i o n  and orientation of the  camera used to take  the 
picture  from  knowledge of the  oorrespondences between 
known objects and their images in the photograph. Any 
formulation of this problem  results in a  set of nonlinear 
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simultaneous  equations  in  several (at least six, depending 
on the  formulation)  independent  variables  and  hence the 
methods  that  have k e n  proposed are iterative  in nature 
and use billclimbing or other well known numerical  tech- 
niques  for  solution.  Closed  form  solution to this problem 
is  considered  difficult  and I quote  (from pp. 123 [18]) 
"However, because of problems  in  calculating a rotation in 
terms of its three underlying  parameters, there appears to 
be no straightforward symbolic  solution to the  problem, 
and  we are forced to seek an  iterative  solution". 

In this paper  we derive a new and  simple non- 
iterative analytical  technique that solves  the  camera lax- 
tion  determination  problem.  However,  in order to do 
that, it  is necessary to represent  the  transformation matrix 
in a different way than is conventional  and  we  derive such 
a representation in the next section. With this new 
representation,  the  inverse  problem can be stated  suc- 
cinctly.  We  present the problem statement  in section 3 and 
briefly  describe  the  rationale  behind  the new technique. 
'The  section also addresses some  misconceptions  regarding 
the  degrees of freedom  in the specification of a transfor- 
mation  matrix.  The  properties of a pure 3 by 3 rotation 
matrix play  an important  role  in  the  analytical  solution  and 
hence  they are mered in section 4. With these develop 
ments  behind us, we are ready for the  solution  which is 
surprisingly  simple!  This is presented  in section 5 for an 
ideal  transformation  matrix  with no errors in  it. In section 
6, we present a modified version of the  same  algorithm to 
handle a real  transformation  matrix  with possible errors in 
it.  Fmally,  in Appendix B, we illustrate our sohtion tech- 
nique on a transformation  matrix, obtained experimentally 
~ 9 1 .  

2.0 DERIVATION OF THE TRANSFORM MATRIX 

Familiarity with the homogeneous coordinate system 
is necessary to understand  the details of the derivation. In 
such a system a three-dimensional  point x ,  y, z is 
represented by a Ctuple wx, wy, wz, w by adding  an extra 
scalar w. To obtain the three-dimensional  coordinates of a 
p i n t  represented  in  the homogeneous coordinate system 
one merely  divides by the last  component of the  4-tuple. 
similarly, a two-dimensional  point u,  v is  represented by 
wu, wv, w and we  divide  by the third component w to 
obtain u and v .  This  representation is useful  in  obtaining 
perspective  transformations  and the reader  is  referred  else- 
where  for  more  details [l, 61. 

Consider a camera  center S located at X,,  Y,, 2, 
(measured  in  the X, Y, Z coordinate  system)  looking  along 
a line of sight SO'P. P is  the  point at which the line of 
sight  pierces  the X-Y plane  and 0' is the point at which 
the line of sight  intersects  the  image  plane (see figure 1). 
Let S'P represent  the  projection of SP on the X-Y plane. 
We can transform the x ,  y ,  z coordinates of a point to 
x' , y' , z' coordinates by choosing an X'Y'Z' system of 
axes centered at S in three steps as fcllows: 

2 . 2 ,  -n4 e c + s .  

CAMERA  CENTER 

e-% ANGLE 

ABOUT Z AXIS  ON X Y  PLANE 

+-TILT ANGLE ORIGIN 

ABOUT XI AXIS  ON Yd 2, PLANE 

FIGURE I -CAMERA GEOMETRY 

2.1 STEP1 (MOVE ORIGIN) 

Fmt move the origin from O to S leaving  the axes 
the same. This can be accomplished  with a displacement 
matrixDandcanberepresentedas a4by4matrixinthe 
homogeneous coordinate system. D is given bj 

1 0 0 -x, 
0 1 0 -Y, 
0 0 1 -zc 
0 0 0  1 

D =  

2.2 STEP2 (PAN) 

Rotate  the X -Y plane  around the 2 axis by an 
angle 8 such that  the new Y axis is parallel to S'P and  is  in 
the  same directica as S'P (see  figure 1). Note that e can 
be between - 7 ~  and +P. If we take the p i t ive  direction 
of rotation in the  conventional sense namely X to Y the 
transformation matrix (say R1) is 

2.3 STEP3 (TILT) 

Step 2 gives us a new X axis, a new Y axis and 
leaves the Z axis intact. Now rotate the new Y-Z plane 
around the new X axis by an  angle + (see figure 1) to 
align the Y axis with SP. The positive  direction of rota- 
tion is once again  from Y to 2 as shown in  the figure. It 
is important to note that + is between -- 7F and +x This 

2 2 '  
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will be  used  later in the  decomposition process. The 
transformation  matrix R2 that does this is 

0 0 0  

2.4 STEP4 (SWING) 

Now  we obtain a camera  centered  coordinate  system 
with  the new Y axis aligned  along  the  line of sight  and 
pointing towards the image  plane  at  a  distance F from  the 
camera  center S. The projection of the X' axis and the Z' 
axis on the image  plane is shown in figure 2.  However 
the image  coordinates of an image  point may be measured 
with respect to U-V axes (direction unknown) centered 
at the image origin I (location unknown) as shown in fig- 
ure 2.  We can transform  the X' -Z' axes by rotating 
around  the Y' axis by an  angle JI such  that  the new X' axis 
is  aligned  parallel to the U axis. This will leave the new 
2' axis either  aligned in the  same  direction as the V axis 
or parallel to it but in the  opposite diredon. It is impor- 
tant to note however that $ can be chosen so that  the new 
X' axis is in the same  direction as the U axis. The  matrix 
R 3  that  accomplishes this is 

Icssdl 0 -sin$ 01 

R3 = sin* 0 cos+ 
1 " .  0 0  0 O ' !  1 

We will name  the  resultant  coordinate  system  the 
image  centered  coordinate  system.  The  image  plane  itself 
is at y' = F .  The  coordinates x' , y' , z f  of a  point 
x, y , z (in world  coordinates)  is  given by E] = [=I [: X 

1 
where EXT is  a 4 by 4  transform  matrix  given by 

MT = [R3] [R2] [Rl] [D] = [R] [Dl 
IfwewriteR as 

then 

where  the  nine  parameters a, b ,   c ,  d ,  e ,  _. , 

giva  by 
f -  g, h 

f = s i n +  (2.6) 
g = cos0 sin* + sine sin+ cos* (2.7) 
h = sine sin* - cos0 sin+ cos+ (2.8) 
i = c m . + c m $  (2.9) 

and p ,  q ,  r are expressed in terms of 
a, 6 ,   c ,  d ,  e, f, g, h ,  i as 

p = -aXc-bYc-cZc (2.10a) 
q = -dXC-eYc-fz, (2.10b) 
r = -gXc-hYc-iZc (2.104 

Now to convert  the  camera-centered x' , y' , z f  COOT- 
dinates to image-centered u,  v coordinates on the  image 
plane  we take the  following  steps  (step 5 through 7) 

2.5 STEP 5 (PERSPECTIVE) 

Obtain the x", z f  coordinates of an image  point  by 
the  perspective  transformation as follows 

= - x'F and z ) f  - z'F 
Y'  Y' 

2.6 STEP 6 (RASTEBIZATION) 
To  convert  the  mmsurement  units to image  units  (to 

rasterize  for  example),  scale by K, in the X" axis and k,, 
in the Z" axis. Note  that k, is always  positive. K, may 
be positive or negative. 

2.7 STEP 7 (MOVE  IMAGE ORIGIN) 

Translate  the origin to 1. If the coordinates of 0' 
are uo and yo in the U-V system  then  combining steps 5 
through 7 we get 

k,x'F Sz'F 
u = z Q + -  and V = V O + -  

Y' Y' 

V 

- 

Z I  
Y'  AXIS  INTO  THE PLANE 

I 

I 
I 

I 

$ - S- ANGLE 
ABOUT Y'  AXIS ON 
Z ' ,  X '  PLANE 

NOTE k l =  k u F  AND IS + v e  

k p =   k V  F AND COULD BE + v e  OR - ve 

AND O < - + < Z T  

FIGURE 2 - IMAGE  PLANE  GEOMETRY 
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Using the homogeneous coordinate system this can 
be written as 

where I h T  is a 3 by 4 matrix  whose  components are 

Note  that if we  denote hF by R1 and  k,,F by k2, in 
the 3 by 4 matrix I h T  there is no reference to F at all. In 
fact  the  focal  length F is not recoverable  from  any meas- 
urements of image  coordinates.  We will show that R1 and 
k2 are indeed  recoverable but F by itself  is not, nor are k, 
and k,,. Thus we can represent the whole  imaging  process 
by a 3 by 4 matrix T known as the  transformation  matrix 
which expresses the  relationship  between  image  coordi- 
nates and  world  coordinates as follows 

[:I = [.I E] 
and 

[TI = [ImI [ n l  
I h T  is  expressed in tams of 4 parameters R l ,  k2,  uo 

and vo and EXT is expressed in terms of the six  parameters 
x,, yc, zc, 8 7  4, and JI. 

3.0 DECOMPOSING THE TRANSFORM MATRIX 
_____~ 

Let us represent  the  components of the  transform 
matrix T by t i l ,   t i 2  .... t33,  t34. These  an be  also  be 
expressed as 

tll = Rlu + uod 
t12 = klb + uoe 
t13 = k1c + Ibf 

2.21 = R?g + vod 
t14 = k# + uOq 

tzz = k2h + voe 
t23 = hi -t- vaf 
tB = kg + voq 
t31 = d 
t32 = e 

t33 = f 
234 = 4 

Note that if all terms of the  transformation  matrix T 
were  scaled by the same  amount  (say  dividing by q) ,  no 
change occurs in  image  coordinates because of the use of 
the homogeneous coordinate system  and .the subsequent 
division by the third row to get u and v . Thus it can be 
given  in  terms of eleven tij with tM set to 1. The  problem 
we wish to address involves  decomposing this matrix to 
arrive at kl, k2, uo, yo, X,,  Y,,  Z,, 8, + and $. One way 
to look at it  is  that we are given  eleven  equations express- 

ing eleven tij in terms of sixteen unknowns kl ,  R2, q,, yo, 

X,, Y,, Z,, u, b, cy d ,  e, f, g, h and i .  However, it is 
easily seen that the nine unknowns u,  b, cy d,  e ,  f, g, h 
and i can be specified in  terms of the three unknowns 8,4, 
and JI. Therefore we really  have  eleven  equations  in only 
ten unknowns(!) which  means  we  have an  overconstrained 
system of equations. However  expressing u , 6 ,  cy  d ,  e, f , 
g Y h a n d i i n t e r m s o f 8 , 4 , a n d 6 i s n o t o n l y m e s s y b u t  
makes  the  decomposition  algorithm  harder to understand. 
Hence we will take the  following  approach:  We will leave 
it in terms of sixteen unknowns but impose additional (6) 
constraints to force the nine  components u through i to 
form a 3 by 3 pure  rotation  matrix. 

It  is worth noting  that there are only  ten  degrees of 
freedom  associated  with a perspective  transformation 
matrix.  The six degrees of freedom  associated  with  camera 
location (3) and  camera  orientation (3) are obvious. The 
other four consist of two for scaling  and two for  location 
of origin in  the  image  plcne. If we measure  the  image 
coordinates  directly on the image  plane  then the two 
degrees of freedom  associated  with  scaling  do  not exist. 
Further if we  assume the origin of measurement is 0' (the 
principal point on the imagc plane)  then  the  degrees of 
freedom are reduced by two more to a total of six. Thus, 
in principle,  we can solve for  camera  location  and orienta- 
tion  from  knowledge of three points and  their  correspond- 
ing images. In such a case we obtain six equations, two 
for each correspondence.  However,  since  the  resultant 
equations are polynomials of at least  the second degree, in 
general we  get  multiple  solutions. But it so happeas  that 
if we  know four points on a plane  and  their  corresponding 
images (as measured  directly on the image  plane  with no 
scaling)  then we can uniquely  locate the  camera  position 
and orientation. 

In this paper  we are interested in a general  solution 
with no restrictions. since we have ten independent unk- 
nowns, we  need ten independent  equations. It is generally 
believed [5, 7, 16 etc]  that a minimum of six points and 
their maponding images are needed to determine  the 
transformation  matrix T uniquely. The argument  made is 
that there are eleven  independent  components  in  the 
matrix T and  hence  that  we  need at least  eleven  equations. 
It is true that there are eleven  components in the transfor- 
mation matrix T but not all eleven can be independent 
because, as we  have  shown, the eleven can be  expressed  in 
turn using a maximum of only ten independent  variables. 
Thus given an  experimentally obtained transformation 
matrix, because of errors in  the  terms tij of the matrix, we 
can obtain  different  solutions  depending on which ten of 
the tjj  we  choose to use. Hence  we will fmt develop an 
analytical  technique of solution  for  the case with no errors 
in  the terms tij and then modify it for application  in  prac- 
tice. In the next section we describe the properties of a 
pure  rotation  matrix which are used in the development of 
the algorithm. 
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4.0 PROPERTIES OF THE ROTATION MATRIX t23 can be expressed  using  only k2, YO and JI. Thus  it  is 
possible to compute kl, uo and JI from t l l ,  tI2 and t13 and 
use the value of JI and only two out of the three tZl, t22 
and t23 to compute and vo. The  fact  that we  need  only 
five out of these six terms is a  consequence of having 
eleven tjj b u t  only ten independent  variables. Finally t14 
can be used to computep and tZ4 can be used to compute 

A pure rotation matrix must be a "Fop" Orthonormal r .  Knowing p ,  g, T and 8, +, JI we can compute X,, Y, 
matrix" [20]. Hence it follows that R -  is RT and  is  given and zc. 

L e t  R be a 3 by 3 rotation matrix expressed as 

R = E  i] 
by 

R-' = I" b e h 
IC f iJ 

This property along  with the property that  the  determinant 
of R must be unity implies the  following constraints 

d + b 2 + c 2 = d 2 + e 2 + f 2 = g 2 + @ + i 2 = 1  

i = a e - b d   g = b f - c e   h = c d - u f  

a = e i - h f   b = f g - d i   c = & - e g  

d = h c - b i   e = a i - g c   f = b g - a h  

a d + b e + c f = d g + e h + f i = a g + b h + c i = O  

Obviously  not all of these are independent. The 
interdependence can be recognized  from  the  following 
algebraic  identity 

(ud+be+cf)2 = (a2+b2+c2)  (d2+e2+f2) 
- (ue -bdY - (cd-uf)' - (bf-ec)' 

Thus if we  choose the 6 constraints to be 
d + b 2 + 2 = 1  
d 2 + e 2 + P = 1  
2 + h 2 + i 2 = 1  
i = a e - b d  
h = c d - u f  
g = b f - e c  

they are  sufficient to derive  the  other constraints we  need 
namely 

a d + b e + c f = O  
g d + h e + i f = O  ( W  

In the next two sections we will use these to decompose 
the matrix first assuming that there are no errors in tij 
terms and  then  with the realistic assumption that  there are 
errors  associated with the terms  of  the mtrix T . 

5.0 THE DEAL CASE  DECOMPOSITION 

Fmt we  will  give an outline of the  technique  and 
then  the  details. 

5.1 SOLUTION  OUTLINE 

t31,  t32, t33 wiU be used to solve  for  the  three unk- 
nowns 8 , 4  and q. Once we  know  these,  the six t e r m s  tl l ,  
112, t13, tzl, tn, t23 can $e expressed  using  only  five unk- 
nowns k l ,  h, 160, vo and JI. Further tll, t12 and t13 can be 
expressed  using  only kl, ~0 and 31 and  similarly tZl, tZ2 and 

5.2 SOLUTION  DETAILS 

Let us consider  the sum 

6 1  + $2 + t:3 
Since we have  normalized all tu by dividing by t34 we have 

Berefore, we get  (using C2) 

Assuming q is positive  (refer to Appendix A) we obtain  q 
and  hence d, e and f. 

L e t  

A31 = t31q2, A32 = t32$,  A33 = t339' 

and 
'11 = t11A32 - t12A31 

Hence 

= kl (ae - M) = k'i 

Similarly if we let 

x12 = t12A33 - t13A32 

and 

'13 = t13A31 - t11X33 

then it can be seen that 

A12 = k1g and A13 = k1h 

Squaring and  adding  we  get  (by  using 6 3 )  
Afl + Af2 + Af3 = kf (i2 + g2 + h2) = k: 

Thus we obtain kf and hmce kl (remember that kl is 
positive).  Knowing k1 we now obtain i ,  g and h from 
A l l ,  A12 and A13. Since we  know i ,  g and h,  using  any 
two terms from t21, tn and t23 (say tZl and tZ2) we can 
obtain k2 and vo (see equations  for tij in section 3). Note 
that  one of the terms among tZl, Q~ and t23 is redundant in 
the  ideal case. That is to be expected considering  that we 
only need ten equations to solve  for  the ten unknowns and 
we have  been  given  eleven tjj- 
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using d ,  e and f (obtained  from t3 ] ,  t32, t33) and 
the  just  obtained g ,  h and i we can compute a, b and c 
(using  equations  for a, b and c in terms of d ,  e ,  f, g ,  h 
and i in section 4). Using  any  of these three (Say a ) from 
tll we obtain %. Using uo and k l  in t14 we compte P . 
similarly using v0 and k, in tB we can compute r . 

si= f =  sin+ and -%z+s+y, we h o w  +. 
2 since e = m e  ax+ and d = -sine cos+, from d,  e and 

+ we obtain m e  and sine and hence 8. Similarly  since 
c = -cos+ sin$ and i = cos+ cos+ from c,  i and + we 
obtain $. 

So far we  have  computed kl, k27 UO, VO, 8,  4, JI, P, 
and r .  The three X,, Y, and Z, can k obtained using 

X , = - a p - d q - g r  

1T 

the following equations : 

Y, = -bp - eq - hr 

Z, = -cp - f i  - ir 
Thus it is possible to analytically  compute  the ten 

two from t.1, tZ2 and t23.  In much the same fashion  we 

two from tll, t12 and t13 to compute the same ten parame 
ters by first  computing b, then a, b and c,  then kl and uo, 
then vo and p and r . It should  be  emphasized here that 
we  really  need only ten of these  eleven tii and if we are 
given all eleven rij of a transformation  matrix  the  problem 
is harder to solve because the  system is overconstrained. 
In the next section  we  describe an extension of this tech- 
nique which obtains the ten parameters using all eleven tij. 

6.0 DECOMPOSITION  SOLUTION IN PRACTICE 

-Owns using til, t12, t13, t14, $4,  ?317 t32, t33 and  any 

could have used t21, h, $3, 224, t14, h 1 ,  t32, t33 and  any 

Inanactual~asealltermst~haveerrorsinthem. 
One  possible  solution  would be to discard any one of the 
six t l l ,  t I 2 ,  t13 ,  tZ l ,  tZ and t23 and  using the other  five  and 
f I 4 ,  b4, r 3 ] ,  232 and 233 solve  for the camera parameters. 
Thus we obtain six different  solutions  and  either we  have 
to average  them or obtain a solution  from  these six by a 
least-square  fit or averaging or some such technique. Not 
a very  satisfying  solution!  Instead let us do the  following. 
We  have sixteen unknowns and  eleven  equations  with six 
coostraints on the terms a, b, c, d ,  e, f, g, h and i .  From 
symmetry considerations there is no  preference for drop 

five.  ITherefore  let us not drop any! Instead we will relax 
the requirement  that the terms u through i form an ortho- 
normal matrix. This will be done by using  five constraints 
instead of six by dropping one of the six constraints.  But 
which one? 

Let us examine the solution for the ideal case care- 
fully. As before,  we obtain q and hence d ,  e and f from 
t31,   t32 and t33.  This requires the use of the constraint 

d 2 + e 2 + f 2 = 1  

ping  any o x  of f l l ,  6 2 ,  t13,  t21, %2, tL3 owr the other 

Defiie 

as before  and  thus we  obtain 

k l ( a e - W ) ,  kl(bf-ce) and kl(cd-af) 

Let us denote 

(ae-bd) by i, (if-ce) by g' and (a i -6 )  by h' 
Because of errors, these are not equal to i, g and h respec- 
tively  but stil l  

i z i ,  g z g  and h=ii 

Let us use the following three  constraints (one of 
thesehasalreadybeenusedtoobtaind,eandf) 

ad+be+cf=O and $+b2+c2=1 and &+e2+$=1 

n e s e  together  imply  (using the algebraic  identity in sa- 
tion 4) 

@+hi+? = 1 
and using these we obtain R1 from 

h~l+A:2+Af3 = k! (g2+h2+?) = kt 

and ~0 from 

Thus we obtain kl (since k1 is positive)  and  using  that the 
magnitude of uo but not its  si@.  Similarly if we denote 
(as before) 

= t23X31-t21A33 

we obtain 

We will now impose two m e  constraints in a similar 
fashion.  They are 

dg+eh+fi = 0 and 2 + h 2 + i 2  = 1 
These together imply 

8+b2+E2 = 1 
and  thus squaring and adding we  get 

k&+X&+Az3 = kg 
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and 7.0 CONCLUSIONS 

Thus we can obtain  the  magnitudes of both k2 and vo 
but  not  their  signs.  However  using  the  approximate  values 
g f o r g o r i f o r h o r i  foriandsubstitutingthatinthe 
equation  for tZ1 or $2 or t23 (from section 3) we can deter- 
mine the  signs of ICz and yo. Similarly,  using  either  the 
approximatevalueof~foraordforborEforc wecan 
obtain the  sign of uo. (For  this  technique of determining 
signs to dxays work  correctly,  even  in  degenerate cases, 
care has to be exercised regarding the choice of the term 
for  computation.  One has to choose  the  term  that has the 
maximum variation  in  magnitude when the sign of a  vari- 
able  in  question is changed.) 

Knowing the  values of k l ,  h, uo and yo, we can use 
the expressions for til, t12,   t13,   t14,  $217 h ,  t23 and t24 to 
caldate the  values  for a ,  b, c ,  p ,  g ,   h ,  i and r respec- 
tively.  We now have  the  values  for a ,   b ,  ...., i and also 
the  values for p ,  q and r .  Using  equations  (2.10t1)~ 
(2.10b)  ,and (2.104 we can compute X,, Y, and Z,. Using 
equations  (2.4),  (2.5)  and  (2.6)  for d ,  e and f we can 
compute  the angles 0 and + (as before).  We can now use 
either  the  set of equations  (2.1), (2.2)  and  (2.3) for a ,  b 
and c.or the  set of equations ( 2 3 ,  (2.8)  and  (2.9)  for g ,  
h and i to compute  the  angle JI. Hmever, because sf 
experimental errors, the  values obtained in  the two ~ s e s  
will in general be different. We could  solve  for both 
values  and  take  their  average to be the value for +. The 
difference  between  the two values is a  measure of the @on- 

sistency of the transformation  matrix.  Ideally  it shodd be 
zero. It is possible to explain this deviation by assuming 
that the the two image axes U and V are not perpendicular 
to one  another  but  that  the two axes deviate from the per- 
pendicular by an angle 8 [21]. To  summarize we have 
used all six t l l ,  tlz, t13,  rZl ,  tZ and t23 but  used only the 
following  five co~lstraints 

$+b2+$ = d 2 + e 2 + f  = 2 + h 2 + i 2  = 1 

and 

ud+be+cf = dg+eh+fi = 0 

Note  the  symmetry  in  the choice of constraints. 'Ihe m- 
straint that we have not used is 

ag+bh+ci = 0 

We  have  arrived  at  a  very  simple  non-iterative alge 
rithm  for decomposing  any  given  transformation  matrix 
bio the  various  camera  parameters  that  constitute  the 
components d the  matrix.  We  have  implemented the 
above  algorithm as a C program  running  under  the upu?x 
environment. The program  has  been  tested  extensively and 
performs  well  when  given real data as well as erroneous 
and  degenerate  data. 
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APPENDIX A 

We  have  tacitly  assumed that q is always  positive. 
Clearly  when  the  camera  is  looking  towards  the origin q is 
positive.  However,  when the camera is looking  away  from 
the origin, q is  negative. In such a case if we consider the 
image  plane to be at a  distance F from the camera  but  in 
the  opposite direction (see figure 3), then q can be made 
positive.  Mathematically this inversion can be accom- 
plished as follm: 

If q is negative,  let q' = -q so that q' is positive. 
Now if let Xi j  = -tij then we get  a new transfonnation 
matrix  in  which all terms have  changed  signs. In particular 
now AM = -q  = q' and is positive. The Aij can be writ- 
tenas 

FIGURE 3 - T H E  TWO PLANES  ARE ON THE OPPOSITE 
SIDES OF THE  CAMERA  CENTER.  THE 
ANGLES ARE RELATED BY 8'= 6 tr, 
+'=-+ AND J I ' z - 9  

X 1 1  = -kla - uod = kl (-U) + UO ( - d )  
X 1 2  = -klb - %e = kl (-b) + uo ( - e )  
X13 = -klc - U$ = kl ( - C )  + uo (-f) 
X14 = - k g  - U o q  = kt ( - p )  + uo 4' 
X21 = -kG - vod = - k2 (g) + vo ( - d )  
A 2  = -k2h - v$ = - k2 (h) + vo (-e) 
A23 = -k2i - v$ = - k2 (i) + vo (-f) 

A24 = -k2r - voq = + 

X,, = -e 

k2 (4 + yo  9' 
X31 = -d 

X33 = -f 
A34 = q' 

In this new matrix q' is positive.  Note  carefully  that 
this change was accomplished by changing the signs of u, 
b, c ,  d ,  e and f and kz. The  signs of g, h and i were not 
changed.  This is necessary to assure  that  the  rotation 
matrix  is  a "proper orthonormal" matrix. If we were to 
change  the  signs of all components, the determinant will 
also  change  sign  and  the  matrix will no longer be 
"proper". This  change  in two rows of the  matrix is 
q u i v d e n t t o 8 ' = 8 + ~ , 4 ' =   - 4 J I ' = - J I . T h a t t h i s  
is indeed so can be verified  from figure 3. Thus it is valid 
to assume that q is  always  positive. In fact, without  loss of 
generality, it is  possible to assume  that  any two among  the 
three k l ,  k2 and q are positive. 
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APPENDIX B 
We also know that 

d = qt31 = -3.85453OE-01 
e = 4632 = -9.167364E-01 
f = ~$33 = -1.04943lE-01 

Since i has the  largest  numerical  value among 5 ,  i 
and i, using the expression 

kzi + V$ 

4 
*23 = 

and  using the approximate  value i for i and using the just 
obtained value for f we  determine  the signs of k, to be 
negative  and vo b be positive. M a r l y  since 6 has &e 
largest numerid value among 3, 6 and E -g & 
approximate value cm' €or a and  the expression for tll, we 
determine  the sign of uo to be positive. n u s  we h v e  
determined kl, b, %, vo9 d, e and f hi both mgnihde 
and Sign. The signs of a, b, c, 8, tr and i are known but 
we have only  approximate  values foa the magnitudes. 
Using  the expressions for t14 and we calculate p and T 
tobe 

p = +6.91318$E+01 

Now that we  know k,, k2, uo and v, exactly, the 
values of a, b, c ,  8 ,  A and i can be 

IPOW be computed  and  they are .&own beelm along with 
the  approximate values and the difference (magnitude] 
between the two values 

va lm of 611, f12, f13 ,  $219 8 2  and $223- vduf3 a 

a= -9.2198E-01 e= -9.2208.E-OB dif= 9.721%-05 
b=  +3.8720E-01 b= +3.8693E-01 biif= 2.69022-04 
c= +4.001614:-03 E= +6.7QUE-Q3 dif= 2.7MlE-03 
g =  -3.4455E-02 9' -3.6965E-02 dif= 2.5099E-03 
h= -9.9352E-02 h= -9.8298E-M dif= 1.0536E-03 
i= +9.9445E-01 i= +9.9447E-01 dif= 1.4579E-05 

?he  values of d ,  c and f dbviously are not affected. 

ever, the nine values ri, b9 E ,  d ,  e, ft 

form a proper orthmswd matrix.) 
five constraints 

~ + b 2 + c 2 = d 2 + ~ + ~ = ~ $ 2 + ~ + + z = 1  

and 
B d + b e + c f = g d + h e + i f = O  

but the sixth cmstraint 

ag + bh -+ ci 

has a value of -2.722193E-43  instead of zero. This 
corresponds to a skew angle 6 of approximately  0.156 (in 
degrees). This is a very small deviation  and is consistent 
with the fact that the transformation matrix is quite am- 
rate. 

Given below is an experimentally obtained 3 by 4 
transformation matrix 
-2.3819E+OO +4.9@$E-01  -3.9462E-02  +8.4740E+02 
-4.3897E-02  -6.2872E-02  -2.4071E+00 +8.829lE+02 
-2.6388E-M  -6.2759E-04  -7.1843E-05 +l.OO@JE+OO 

Let us apply the algorithm in section 6 to the above 
example. From 

t31 = -0.263878%-(63, t32 = -0.6275908E-03 

and 

633 = -0.7184327E-04 

we  get 
1 

q = (& + gz + t i 3 ) 2  = +B.rn28E+03 
- 

X11 = +3.469129E+03 = k, i 
A12 = -1.28954%+02 = kl e 
XI3 -3.429078E+02 = k1 h 

Thus 
X:, + kf2 + A:, = +1.21699ME+07 = kf 

§ins k, is known to be positive we get 

k, = 6(1.21699ME+07) = 3.488420E+03 

and 
2  2 

tfl + e2 + tf3 = +5.92?379E+ 

Therefore 
k2 = & 3.48536&+03 

and 
VO = +: 4.779105E+02 
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Knowingp,  q and t we can now compute X,, Y, and 
z, to be 

X, = +6.209344E+02 
Yc = +1.295476E+03 
2, = +3.218140E+02 

Fmm the values of a, b, ... i we can compute the 
angles (in degrees) to be 

e = +1.571951~+m + -6.023912E+OO 
JI = +3.5%915E+02 

JI is the average of the two values (see section 6). 
These have been verified to be close enough to the actual 
values  and as a check we  have  given  below  the transfh- 
mation matrix that  would be obtained if we  used  the 
results of camera location, orientation, scaling etc to 
recompute the transformation  matrix. 

-2.3820E+OO  +4.9616E-01 -3.623OE-m +8.4795E+Q2 
- 4 . m - 0 2  -6.413OE-02 -2.4072E+OO +8.8314E+Q2 
-2.6388E-04  -6.2759E-04  -7.1843E-05  +1.0000E+00 I 

A comparison of this matrix with the input matrix 
indicates  reasonable  agreement in values  and umfkms 'chat 
the technique is computationaliy  robust in the presence of 
errors in the terms of the transformation matrix. 
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