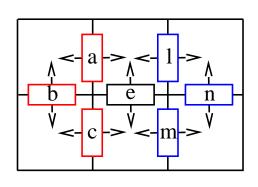
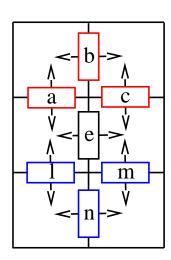


Edge Relaxation - Linking Contiguous Edges

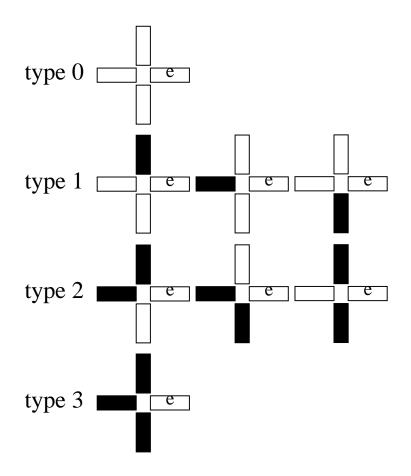
Any edgelet that is truly part of a larger, continuous contour should have corroborating edgelets representing the continuation of the contour in its neighborhood.

Left-Right and Top-Bottom Neighborhoods





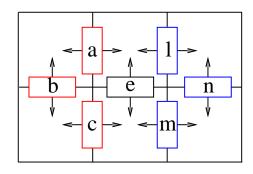
Edge Relaxation - Continuation Types



- \bullet q gradient magnitude threshold
- $0 \le (a, b, c) \le 1$ normalized gradient magnitudes, a > b > c,
- m = max(a, b, c, q).

$$conf[0] = (m-a)(m-b)(m-c)$$
 $a, b, c < q$
 $conf[1] = a(m-b)(m-c)$ $a > q; b, c < q$
 $conf[2] = ab(m-c)$ $a, b > q; c < q$
 $conf[3] = abc$ $a, b, c > q$

Edge Relaxation - Continuation Heuristics



$$\begin{vmatrix} 0-0\\0-2\\0-3 \end{vmatrix} \text{NEGATIVE EVIDENCE} \Rightarrow C^{k+1}(e) = \max(0,C^k(e)-\delta)$$

$$\begin{vmatrix} 1-1\\1-2\\1-3 \end{vmatrix} \text{POSITIVE EVIDENCE} \Rightarrow C^{k+1}(e) = \min(1,C^k(e)+\delta)$$

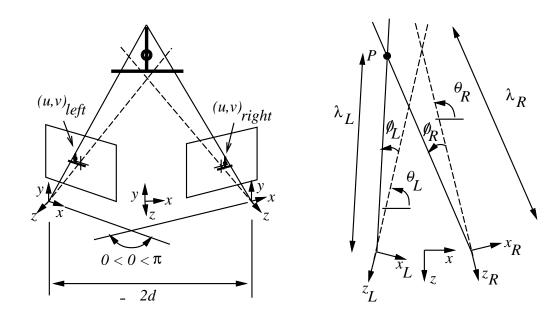
$$\begin{vmatrix}
0-1 \\
2-2 \\
2-3 \\
3-3
\end{vmatrix}$$
 NUETRAL EVIDENCE

Hough Transform

with some knowledge about the shapes of an objects of interest, a so-called "voting" algorithm can be used to identify probable instances of the object

consider the family of lines described by the slope-intercept form

Recovering Space - Binocular Stereopsis



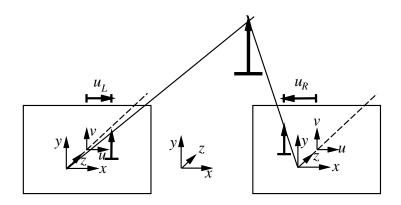
$$\lambda_L cos(\gamma_L) - d = \lambda_R cos(\gamma_R) + d$$
 $\lambda_L sin(\gamma_L) = \lambda_R sin(\gamma_R),$

$$\lambda_L = \frac{2dsin(\gamma_R)}{sin(\gamma_R - \gamma_L)}$$

$$\lambda_R = \frac{2dsin(\gamma_L)}{sin(\gamma_R - \gamma_L)}$$

Depth by **vergence** and **disparity**.

Depth Encoded as Disparity



Consider this simple binocular configuration. In this geometry, the stereo system encodes depth entirely in terms of disparity. Under these conditions

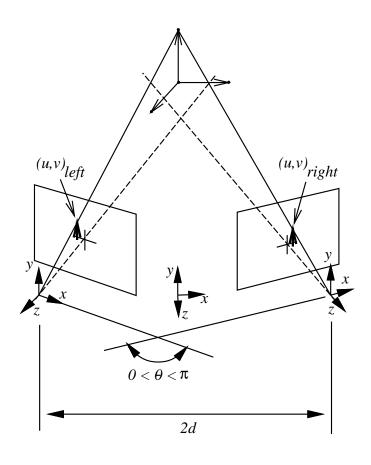
$$u_L = \frac{f(x-d)}{z}$$
 $u_R = \frac{f(x+d)}{z}$ $zu_R = f(x+d)$ $zu_L = f(x-d)$

$$z(u_R - u_L) = 2df$$

So by eliminating x , we may solve directly for z

$$z = \frac{2df}{(u_R - u_L)}$$

Weak Perspective Affine Transformations



$$\begin{bmatrix} u_L \\ v_L \\ u_R \\ v_R \end{bmatrix} = \begin{bmatrix} A_{00} & A_{01} & A_{02} & A_{03} \\ A_{10} & A_{11} & A_{12} & A_{13} \\ A_{20} & A_{21} & A_{22} & A_{23} \\ A_{30} & A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Weak Perspective - cont.

With 4 non-coplanar points, this leads to 16 equations in 16 unknowns

or since;

$$\left[egin{array}{c} u_L^0 \ u_L^1 \ u_L^2 \ u_L^3 \end{array}
ight] = \left[egin{array}{cccc} A_{00}x^0 & A_{01}y^0 & A_{02}z^0 & A_{03} \ A_{00}x^1 & A_{01}y^1 & A_{02}z^1 & A_{03} \ A_{00}x^2 & A_{01}y^2 & A_{02}z^2 & A_{03} \ A_{00}x^3 & A_{01}y^3 & A_{02}z^3 & A_{03} \end{array}
ight]$$

the solution can be obtained from $4 \times (4 \ equations \ in \ 4 \ unknowns)$

The Epipolar Constraint



Epipolar plane: defined by the line joining the focal points of the stereo system and the ray from the left focal point to the image feature of interest.

Epipolar line: The intersection of the epipolar plane on the left and right image planes.

Alternatively, the inverse of the Amatrix:

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} A_{00}^{-1} & A_{01}^{-1} & A_{02}^{-1} & A_{03}^{-1} \\ A_{10}^{-1} & A_{11}^{-1} & A_{12}^{-1} & A_{13}^{-1} \\ A_{20}^{-1} & A_{21}^{-1} & A_{22}^{-1} & A_{23}^{-1} \\ A_{30}^{-1} & A_{31}^{-1} & A_{32}^{-1} & A_{33}^{-1} \end{bmatrix} \begin{bmatrix} u_L \\ v_L \\ u_R \\ v_R \end{bmatrix}$$

the forth column yields:

$$1 = A_{03}^{-1}u_L + A_{13}^{-1}v_L + A_{23}^{-1}u_R + A_{33}^{-1}v_R$$

Vision Programming Environment

IMAGE structure

```
typedef struct {
   int width, height, maxval;
   int *image;
} IMAGE;
```

read_image()

 \bullet reads .pgm form at and converts it to an IMAGE data structure

remap()

• given IMAGE structure with associated min and max, remaps image onto 0-255 so that it may be written in .pgm format

write_image()

• writes IMAGE data structure out to disk in the .pgm format

Stereo Reconstruction Homework

Image Datasets

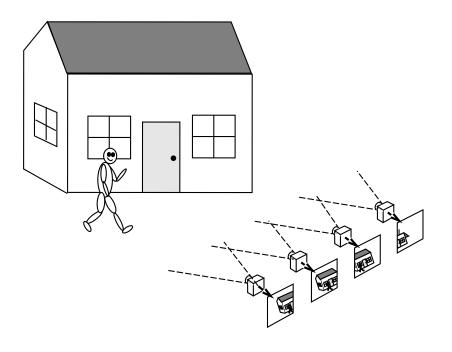
multiple images of static scenes from simple polyhedra to complex model train sets taken with a *scientific camera* at the Calibrated Imaging Laboratory at CMU.

ftp ftp.cs.cmu.edu login: anonymous passwd: [your email] cd /usr0/anon/project/cil binary dir get cil-0001.tar etc.

or

http://www.cs.cmu.edu:8001/usr0/anon/project/cil/html/cil-ster.html

Stereo Reconstruction Homework



Left Image

 $\begin{array}{c} \text{c-000101.pgm} \\ \text{c-000101.par} \end{array}$

Right Image

 $\begin{array}{c} \text{c-000103.pgm} \\ \text{c-000103.par} \end{array}$

Parameter Files:

- dimension of a pixel
- pinhole camera effective focal length
- world-camera translation
- world-camera rotation