Chapter 7

Vision

The applications of digitial image processing have grown tremendously in the past decade. The role
for processing data sets naturally represented as two dimensional data structures is growing still.
Remote sensing applications are used to work in hostile environments, to reconstruct the surface
topography of the earth from high altitude fly-overs, and to image various physical phenomena

inside of the human body.

This chapter focuses specifically on techniques for closing the loop in robotic mechanisms. Biological
systems call on a variety of percepts to construct a richly encoded representation of the relationship
between the organism and the world. Humans use vestibular, cutaneous tactile, visual, auditory,
olfactory, and proprioceptive feedback in this regard. In this chapter, we will consider visual
feedback by examining techniques derived from computer vision in some detail. Many of the topics
discussed are generic and fall under the rubric of signal processing. In this sense they apply to all

perceptual tasks that involve the interpretation of a temporal signal.

However, in this chapter we will discuss a more specific question — how might image processing
be used to direct the behavior of a robotic system? Traditionally, the robotics community has
adopted a viewpoint we will refer to as percept inversion. This approach advocates asking the
following question; if sensory stimuli are produced in such and such a manner, then what must the
world have been like to produce this stimulus? Stated another way, if stimulus can be predicted

given assumptions regarding the world,
Stimulus = f(World)
then the world can be reconstructed from a pattern of stimulation
World = f7(8S).
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The trouble with this perspective is that often the function f() is only partially known, and in
general, the inverse of f() is not well-conditioned.

Many researchers in artificial intelligence and robotics are now considering techniques designed to
handle precisely those situations when the relevant world state in not instantaneously accessible.
These approaches attempt to use knowledge and experience in the form of a time series of observable
state information to fill in initially inaccessible detail. This approach can require many actions on
the part of the robot to generate the right time series with which to determine critical state variables
so the approach is inherently active. For this reason, one thinks of such a robot as a embodied

perceptual system.

An example of the perspective offered by the two paradigms as they pertain to computer vision
tasks was presented by Bob Bolles at the 1993 International Symposium on Intelligent Control.

Reconstruction

Figure 7.1 Static Reconstruction Architecture and Task.

In Figure 7.1 a stereo pair is used to reconstruct the world geometry. This task requires specialized
architectures and algorithms and is often the approach employed to interpret medical imagery or
to construct topological maps from high altitude fly overs.

However, another kind of task can be specified. Suppose that a mobile robot must navigate across

outdoor terrain and must avoid intervening obstacles.
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Figure 7.2 Dynamic Attentional Architecture.

Many of the details provided by reconstruction techniques are likely to be irrelevant in this task
and the responsiveness of the robot to the obstacle may well depend on how precisely the robot
focuses on just the right visual feature set. In other words, a looming feature may be just the level

of detail for the navigation task.

Although much of what is discussed in this chapter is generally applicable to arbitrary vision tasks,

the emphasis of these notes is on tasks like the navigation task where less interpretation is required.

7.1 Introduction

Vision in biology and in machine is fundamentally an indirect source of information. The sensor
itself responds to incident electromagenetic energy, but the reason that we look is to ascertain
geometric properties of the world around us. This information is very subtly encoded in the

patterns of electromagnetic energy falling on the 2 dimensional imaging plane.

Figure 7.3 illustrates a sequence of transformations between the illumination source and a digital
image. Energy from the illumination source is radiated uniformly over 47 steradians, its radiant
intensity attentuated as the inverse square of the distance from the source. The total amount of

light energy falling on a surface is referred to as irradiance' and consists of the sum of all incident

!On the surface of the earth, the sun projects about 1200 Watts/m? (or 429 BTUH/ ft?).
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energy from all sources. The total energy leaving the surface is referred to as its radiance and differs
from the irradiance by energy transmitted into and absorbed by the material. As shown in the
diagram, sometimes objects nearby act as indirect sources by reflecting energy toward other objects.
In doing so, these secondary sources modulate the spectral content of the original source, and they
may more rapidly attenuate the light intensity through diffuse reflection and polarization. In order
to observe a portion of the radiant intensity function, the 3 dimensional world is projected onto a
2 dimensional image plane that is sampled at regular intervals, digitized with finite resolution, and

written into a digital memory.
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Figure 7.3 The image formation transformations.

Our goal is to extract information about the world from a 2D projection of the energy stream
derived from this terribly complex 3D interaction with the world. In the next several sections we
will introduce machine vision and formulate models for projective image geometry. We will examine
the effects of sampling and digitization and we will discuss techniques for identifying features on
the image plane that predict relevant world state information. We will introduce methods for
identifying conjunctive feature sets in situations where spatial constraints between features are
known. Finally, in order to relate vision to motor control, we will illustrate how sequences of
images can be used to close the sensorimotor loop, and how information can be fused over time

and over sensor modality.
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7.2 Human Eye

Figure 7.4 is a sketch of the anatomy of the human eyeball. Light enters the eye through the
transparent cornea and is focused by a lens that changes shape under muscular control. The iris

acts as a shutter to control the amount of light entering the eye.

visual The photosensitive surface of the eye is called
axis the retina consisting of rod and cone recep-
1 Cornea

tors. The rods are more sensitive to inci-

irs

dent light and are about twice as numerous
as the cones. The cones, however, are special-
ized receptors responding to red, green and
blue wavelengths within the visual spectrum.
When stimulated, these receptors produce im-
pulses in the retinal cells. The greatest con-
centration of both receptors is near the fovea,
however, this is by far the greatest concentra-

tion of cones anywhere on the retina. There

i are about 100 x 10° receptors and roughly
optc e .
: ng rve 0.8 x 108 nerve fibers exiting in the optic nerve.

This suggests that certain forms of local signal

Figure 7.4 A cross section of the human eyeball. ~ processing occurs directly on the retina.

Later in this chapter, we will describe the manner in which receptors on the image plane sample
the image function (Section 7.4) and we will introduce image operations that require only local
neighborhoods of the retina (Section 7.5).

7.3 Imaging Geometry
7.3.1 The Pinhole Camera

Figure 7.5 illustrates the classical pinhole camera geometry with which we can model the perspective
projection. Figure 7.5(a) depicts an imaging geometry that describes the projective transformation
in the eye and in machine vision systems. The imaging surface is exposed to the electromagnetic
radiosity function through a small aperture so that radiant intensities on the image plane correspond
geometrically to features of the 3D world. Through a simple similar triangles construction, we see

that the u coordinate on the image plane if proportional to the x coordinate of the 3D feature and
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inversely proportional to its 3D range, z.
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Figure 7.5 Pinhole camera model: (a) perspective projection geometry. (b) mathematically equiv-

alent non-inverting geometry.

Note that the image is inverted by this projection, as is the case in the human eye. The brain
adapts to this projection, employing visual and vestibular information to register geometry and
force sensations. Figure 7.5(b) presents a mathematically equivalent projective geometry that does

not invert the image.

7.3.2 Gaussian Lens Formula

Pinhole cameras have an infinite depth of field - that is, they focus information onto the image
plane from faraway as well as nearby features. The geometry of the projection is determined by
the pinhole. This is mathematically sound (and actually works), but the pinhole permits only very
small amounts of electromagnetic information onto the focal plane and can do little to control the
field of view. To collect more light and to control field of view, optics are placed between the scene
and the imaging plane. As a consequence, we discard the infinite depth of field that was so useful
in the pinhole camera. To manipulate an electromagnetic wavefront before it gets to the image

plane one may introduce reflective or refractive elements.
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The most common device used in this manner
is the lens - in fact, biological systems use de-
formable lens in a myriad of vision acquisition
tasks.

The index of refraction for a material that trans-
mits electromagnetic information is the ratio of
the speed of light in a vacuum to that in the
optical material.

c €n
v €0/40

where 4 is the magnetic permeability of the ma-

terial (uo is the permeability free space) and e
is known as the electric permittivity (ey is the

Figure 7.6 Refraction at an optical interface. permittivity of free space).

As a light ray moving in air, for example, crosses an optical interface into material whose index of
refraction is greater than that of air, the light rays is refracted, bending the wavefront toward the
normal of the optical interface. The phenomenon is described by Snell’s law
Sin(eincident) _ ﬂ
Sin(etransmitted) ny ’

(7.1)

where n; is the index of refraction for the medium through which the incident light ray travels, and

nyg is the index of refraction for the medium through which the transmitted light ray travels.

For typical optical systems, the position of the focal plane with respect to the optics is controllable
and we actively control focus. This process brings elements of the scene into focus on the image

plane as a function of range. The Gaussian lens formula shows how this works.

1 1 1
4= 2
VA + Ztf (72)
where:
Z — distance from the lens to the object
7' — distance from the lens to place where the image is formed
f — focal length of the lens

Equation 7.2 is a special case of the so-called lensmaker’s formula written for thin lenses.

Figure 7.7 shows how this works. Light from distant objects (parallel rays on the left) come to
focus at f the focal length of the lens. As the object approaches the camera, the light reaching
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the lens becomes increasingly divergent, and the point at which it is brought into focus moves

correspondingly further from the lens.

Figure 7.7 The effects of range, Z, on the distance to the focal plane.

7.4 Spatial properties of the image function

Both the retina and machine vision equivalents sample the continuous image function. It is clear
that such a discrete sampling will discard some of the latent information, what may not be initially
clear, is that this sampling may also introduce information not originally in the continuous function.
In this section, we will characterize the sampling operator mathematically, discuss its influence on

the spectral content of the signal, and introduce the notion of aliasing on the image plane.

A mathematical abstraction that is central to the analysis is that of the Dirac delta function. This

operator is referred to as a singularity operator for reasons that are obvious by its definition:

6(x—§,y—n)={o; ¢ =6y =1 (7.3)

otherwise

This function has the following properties:

€
//J(x,y)dxdy = 1 fore>0

//F(f,n)é(x—&,y—n)d{dn = F(z,y)

the first of these properties suggests a kind of infinitesimal mask that samples the image function

precisely at position (z,y), and the second is referred to as the Sifting property.
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7.4.1 Fourier Transform

The Fourier transform of a one dimensional function f(z), is defined as:

Flf ()] = F(u) = / F(2)ezp{—i(2nuz)}dz (7.4)

where u is the spatial frequency (in cycles/pizel perhaps, so that when z is specified in pixels,
(2mux) is in radians, and i = /—1. One may view the Fourier transform as the projection of
the image function, f(z), onto the basis functions, exp{—i(27uzx)}, for a particular combination of

spatial frequencies u € [—00, 00]. The inverse transform is written:

FUF(u)] = f(z) = /F(u)exp{i(Zﬁua:)}du (7.5)

The corresponding definitions in 2D are:
Fiflay) = Fluo) = [ [fa.yeap{~i2n(us +vy)}dody (7.6)
FUF(u,v)] = f(z,y) = //F(u,v)ea:p{z'(27r(u:v + vy)) }dudv (7.7)

As we shall see in the following sections, transforming the spatial properties of the image function
into the frequency domain provides the basis for a very general spatial frequency filter. Table 7.1

summarizes some of the Fourier transform pairs that we will need for subsequent discussions.

7.4.2 Shift and Convolution Theorems

The Shift theorem follows directly from the definition of the Fourier transform. If

Flf(z)] = /f(a:)emp{—z'(%ruz)}dw, then
Flf(z—a)] = / f(z — a)exp{—i(2muz)}dz, then

o0

= /f(w')exp{—i(?wu(w' +a))}dz', and

o0

= exp{—i(2mua)} /f(x')exp{—i(?wum')}dw', so that,

Flf(z—a)] = efvp{—i(%ua)};:(f(w)) (7.8)
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Table 7.1: Fourier Transform Pairs

F(w)=F(f(z)) = /oo f(m)e_iwmdm w(rad/pizel) = 2wu(cycles/pizel)
-0
Name f(z) F(w)
rectangular function rect(z) =1 — % <z< % sine(w/2m) = %
triangular function tri(z) = 2(z + %) - % <zx<O0 sinc?(w/2m)
1—2(z) 0<z< 2
Gaussian eIzl 20/ (a? + w?)
e—pm2 \/;2_?3_“’2/4”

unit impulse 5(z) 1
comb function Zn 8(z — nzg) % Zn §(5% — %)
differentiation g™ (z) (iw)"G(w)
linear combination ag(z) + bh(z) aG(w) +bH (w)
scale flaz) ﬁF(%)

The convolution of two functions f(z) and g(z), written f(x) % g(z), is defined by the integral,
o0
ha) = [ flagla — a)da (79)
—00
where « an integration variable. We will show later that if f() is a so-called convolution operator,

then h(z) is equivalent to the pixel-wise correlation of f() and its footprint around g(z). An

important property of convolution lies in the way in which it maps through the Fourier transform.

Flf(@)xg(x)] = F

=
~~
&

[ @)yl — a)dal
fla)g(z — a)da] exp{—i2nuz}dz
() [/z g(x — a)emp{—i(27ruz)}d:1:] da and by the Shift theorem,

()exp{—i(2mua)}da / g(x)exp{—i(2mux)}dx, therefore,

T

Flf (@) xg(z)] = Fu)G(u) (7.10)

This result is commonly known as the convolution theorem and it states that convolution in the
spatial domain is equivalent to multiplication in the frequency domain. It is easy to show that

the opposite is also true; convolution in the frequency domain is equivalent to multiplication in
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the spatial domain. As we will see, this result implies that convolution operators are essentially

spectral filters whose bandpass characteristics are defined by their Fourier transforms.

7.4.3 Sampling Theorem - Aliasing

Figure 7.8 illustrates two spatial functions, f(z) and

g(z). The first, f(z) is a continuous spatial function f(x)

representing the image function and the second, g(z),
is an infinite sequence of Dirac delta operators. The

product of these two functions is a sampled approxi-

mation of the original f(z).

x) Z d(z —nzg) = Z f(nzo)d(z — nxp)

h(z) = f(
We would like to determine the effects of the sampling

function on the spectral energy in f(x). By the con- o o o “o %o %o
volution theorem, we know that the product of these A
two spatial functions is equivalent to the convolution )
of their Fourier transform pairs. { ‘ ‘ {
: | [[01]
f@ > P ARERY
1
Zé(m — nxo) T Zé(u - 2) = G(u), and
n o "n o Figure 7.8 A continuous  spatial
H(u) = F(u)*G(u) function and the sampling function.

We may write the function H(u) in terms of F'(u):

H(u) = l Zéu——]

.’Eon

_ /_OO F(a)G(u— )

- /ooFa l Zéu—a—x—oda]

To 4
n

= / u——)é(u—a—x—o)da

_ _ZFU__/ 5(u—a—)da
Zo —00 Zo
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Therefore, the frequency spectrum of the sampled image consists of duplicates of the spectrum of
the original image distributed at 1/z frequency intervals. Figure 7.9 shows this effect schematically

for two cases.

R(u) is a frequency domain bandpass filter

| S R | S

| | | | | .
@ /N/N/N/N/N /N Ru)= 1 if |u] <1/(2m),

—2/x0 —1/X0 l/XO ZIXO .
H(u) RUWH(U) 0 otherwise

: : :_ | : : :_}_-: Figure 7.9 clearly illustrates the conditions

() ‘2I’Xo ‘1I’Xo 1/IX0 2/'X0 I ' under which the function f(z) can be recon-

structed. When replicated spectra interfere,
Figure 7.9 The effects of sampling on recon- the crosstalk introduces energy at relatively
struction. high frequencies changing the appearance of
the reconstructed image. The sampling theorem follows directly, if the image contains no frequency
components greater than one half the sampling frequency, then the continuous image is faithfully

represented in the sampled image.

7.4.4 The Discrete Fourier Transform and Convolution

A complex function h(k1, k2) defined over a two-dimensional spatial grid 0 < k1 < (N7 —1), 0 <

k2 < (N3 — 1) can be described in the spatial frequency domain using the Fourier transform

N2—1N;—1

H(ni,n9) = Z Z exp(2mikang/No)exp(2mikini /N1)h(k1, k2) (7.11)
k2=0 k1=0
where:
k; = the sample spacing [pizels]
N.
n; = —71,---,5, so that
% = the discrete set of frequencies sampled
i

Note that the frequencies sampled in the transformation correspond exactly to the Nyquist Sampling

rate;

_1 [cy.cle] << 1 [cg{cle
2 | pizel 2 | pizel

In Equation 7.11, the expression for H(n1,ns) is periodic in both the spatial and frequency domain.

This implies that, in one dimension, H_,, = Hy_,, or H_y/3 = Hy/2. This suggests that we can
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let the n; vary from 0 to N; — 1 where the DC signal component (zero frequency) corresponds to

n = 0, positive frequencies 0 < f < 1/2 cpy;l:ls correspond to 1 < n < N/2 — 1, negative frequencies

—1/2% < f < 0 correspond to N/2+1 < n < N —1, and n = N/2 corresponds to both

f= 1/2‘;%0—;2” and f = —1/2%’;—;3. Moreover, the complex exponential (Equation 7.11) can be

decomposed dimensionally in Equation 7.11 suggesting that the 2D Fourier transform is equivalent

to two 1D Fourier transforms applied sequentially, i.e. Fg1(Fra[h(k1, k2)])-

The inverse discrete fourier is defined as:

Na—1N;—-1
1 2 1

Z H(ny,n9)exp(—2mikong/No)exp(—2miking /Ni) (7.12)
NiN2 570 n1izo

h(ki, ko) =

Consider the convolution of two functions, g(z) and f(z) (denoted h = g f), where g(z) is the one

dimensional image function and f(x) is the convolution operator or response function (Figure 7.10).

g(x)

»
»
——————.

V
AL

v

Figure 7.10 The convolution of operator f(z) with image function, g(x).

b

The effect of convolution is to map the function g(z) to function h(z) using a linear combination
of intensities in a region of g(z) defined by f(z). If f(z) was a unit impulse at z = 0, then f(z)
is just the identity filter leading to h(z) = g(z). If f(z) was the unit impulse at x = 10, then
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h(z) = g(z + 10). If, on the other hand, g(z) consisted of the unit impulse or delta-function at
x = xg, the result h(x) is a copy of g(z) smeared into the shape of the convolution operator and

shifted, i.e. h(z) = f(z — zy) for a symmetric operator.

Since both g(z) and f(z) are assumed to be periodic, when the operator is positioned near the
beginning or end of any period in the signal, it can integrate signal data from the end or beginning
of the signal, respectively. Figure 7.10 illustrates the effect; h(z) is shown for the original 13 sample
signal (filled circles) and for the padded 16 sample signal (open circles). The padding eliminates
the edge effects introduced by the periodicity requirement.

EXAMPLE: Suppose that the rectangular

function, rect(z), is the convolution operator as

gx) —@ f(x)

in Figure 7.11. The Fourier transform of rect(zx) —

-—— - e
Y

- - -®

produces the sinc(u) function (see Table 7.1).

It therefore attenuates high frequencies while —

I
’____

allowing the low frequencies to pass relatively
unscathed. Sharp edges in the original image |

will become smooth and gradual in the filtered — h(®) —

- - - e
L - - e

image. The spectral selectivity of f(x) puts it in

the class of so-called lowpass filters. Figure 7.11 —

shows the smoothing effect of f(z) on a discrete
test signal. As we would expect for a low pass
filter, all rapid variation in the original image is ~ Figure 7.11 A simple low pass filter by convo-

removed in the convolution. lution.

7.5 Early Processing

Many important clues about objects in the world can be determined by looking at small neigh-
borhoods of pixels on the image plane. The human visual processing architecture devotes special
purpose hardware to the task of identifying oriented edges, motion, texture, and many other fea-
tures that depend only on local properties of the intensity function. This section will express
this class of tasks mathematically in the form of a convolution with operators designed to identify

important kinds of image features.

The convolution operation of a continuous function defined earlier using Equation 7.9 is repeated

here for a two dimensional signal.

f(z,y) *g(z,y) = h(z,y) = /_o:o /_O; f(u,v)g(x — u,y — v)dudv
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For discrete functions, the equivalent operation is:

o S INe o]
f(‘ran) * g(l'ay) = h(x,y) = Z Z f(u,’u)g(x —u,y— U)

—0o0 —O0

or in a slightly more convenient form:
h(x.y)
+a
h(z,y) = D>, > flita,jra)glatiy+)) \
i=rag=ra N ~\
N\ N\

where, h(z,y) is a new image generated by \\ \\ AN AN N\ \\
convolving the image g(x,y) with the (2a + N\ A\ H(n.n)

1) X (2a+1) convolution mask, f(%,). There-
fore, when « is 1, the convolution operator is

a3 x3. V?\"“ < “\\ F(3.3)

This is a convenient notation because it allows

us to index the image relative to the center

point of the convolution operator. The kind

of processing represented by the convolution = \'.' - \" =

process is necessarily local, where a response G(nn)
h(z,y) depends on a neighborhood of support

in the original image g(z,y) (Figure 7.12). 9(x.y)

Support is drawn from the image according
Figure 7.12 Local Computation of Image Fea-

to the definition of the convolution operator,
tures.

f(@,3)-

7.5.1 Edge Detection

“..there is evidence that the mammalian visual system responds to edges through special

low-level template matching edge detectors.” — Hubel and Wiesel

Significant gradients in the intensity function are highly correlated with spatial discontinuities in
the world. This is obvious when one considers the intensity variation between an object and its
background along the occluding contour, but it is also the case when a continuous surface quickly
changes the direction of its normal (a region of high local curvature). For this reason, locations on

the image plane with steep intensity gradients are often referred to as edges.
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Intensity Gradients
The gradient for a two dimensional image function, g(z,y), can be computed directly if one can
estimate the value of dg/dz and dg/dy.

Vy(z,y) = —@+ = (7.13)

One way of estimating the derivatives is by using a finite difference approximation:

dg(z,y) _ g(z+1,y) —g(z—1,y) dg(z,y) _glz,y+1)—g(z,y—1)

~ ~
~ ~

dz 2 dy 2

As a finite difference, the gradient clearly depends only on local information on the image plane, and
can be conveniently expressed as a convolution with an appropriate convolution operator. For the
derivative in the z direction, f; = [~1/2, 0, 1/2]1x3, and in the y direction, f, = [-1/2, 0, 1/2]% ;.
The magnitude of the intensity gradient and its orientation on the image plane can likewise be

computed.

IVg(z,y)| = l(j—i)QJr(Z—z)T (7.14)

d(z,y) = tan ' (szjz) (7.15)

A number of edge operators often used in the literature are based on this simple finite difference
approximation (see Table 7.2). However differentiation, in general, tends to amplify the effects
of noise in the signal and so is typically preceded by a lowpass filtering operation. While this
may at first seem contradictory, if we assume that the useful information is a bandlimited signal
(ultimately, it must be due to the sampling density on the image plane), and further that the noise
is predominately high frequency, then the preliminary low pass filter will smooth the image with
marginal degradation in the information content, while dramatically reducing noise in the gradient

computation.

Table 7.2 presents some commonly used gradient operators that accomplish smoothing and differ-
entiation simultaneously - smoothing by virtue of averaging the gradient computation over several

rows or columns, and differentiation by the finite difference operator.

Edge detection can be based directly on the magnitude and orientation of the gradient vector.
However, if we define an edge by specifying that the gradient magnitude must exceed a threshold,
then small thresholds find many faint edges (which may be good) while “blooming” strong edges

over several pixels. High thresholds mean sharper edges but far fewer of them.
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Table 7.2: Gradient (first derivative) Operators

operator Vi Vi
Roberts 01 1 0
-1 0 0 -1
Prowi [ -1 0 1] [ 1 1 1]
rewit 10 1 0
-1 0 1 -1 -1 -1
[ -1 0 1] [ 1 2 1]
Sobel 92 0 0
-1 0 1 -1 -2 -1

Edge Sharpening

It would seem valuable, in general, to detect rela-
tively faint edges while at the same time main-
taining precision at strong edges. One way of
accomplishing this is to require that the second
derivative of the intensity function be near zero
when the first derivative is above threshold. In
Figure 7.13, if a simple threshold on the gradient
magnitude where employed, then the edge would
appear to be five pixels wide. If, however, we look
for those pixels near zero in the second derivative
which also have gradient magnitudes greater than
the threshold, then even for these strong intensity
gradients can lead to precise edge locations. This
is equivalent to asserting that the inflection point
in the intensity function is a good estimate of the
center of the edge.

The Laplacian operator approximates the sec-

ond derivative of the image function:

-1 0
d’q d%g
2
0 -1 0

V90| —

V0 —

Figure 7.13 Identifying the inflection point in
the intensity function.
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The Laplacian operator is often used to identify locations where there is a sign change in the
Laplacian image. The zero crossings of the the resulting image can be used to estimate the apparent

center of an edge whose gradient is significant over several pixels.

If we look for adjacent pixels where the sign of the second derivative changes, then we can interpolate
between them and locate zero crossings to floating point precision (sometimes called sub-pixel

accuracy).

7.5.2 Gaussian Operators

Gaussian convolution operators are derived from the Gaussian function

1
go(z) = e’ /207 (7.16)
2wo

The Gaussian operator is really a family of operators parameterized by ¢ which is the scale of the
Gaussian. Increasing the scale by increasing o dilates the function, so that the filter response draws
support from a larger region of the image plane, Figure 7.14(A) shows the Gaussian operator at
three scales. This operator behaves as a lowpass filter with a cutoff frequency that is inversely

proportional to o.

It can be shown (homework problem 2a at the end of this chapter) that for any two functions, f
and g, f*g' = (f *g)’. This implies that using g, to smooth the image and then differentiating, is

equivalent to convolving with g/ .

—X —12/242
gy(@) = ——se /2 (7.17)

The same can be said for the second derivative:

1 z2 1 52 /262

Figure 7.14(B) and (C) show the first and second derivatives of the Gaussian operator at the same
three scales. These functions are similar to the finite difference operators we saw earlier. The
first derivative of the Gaussian is symmetric and odd. It also behaves like an edge detector with
bandpass characteristics that are dependent on ¢. In one dimension, the second derivative of the
Gaussian is equibvalent to the Laplacian operator and is likewise parameterized by ¢. This family
of operators (Gaussian and its derivatives) can be used, therefore, to detect and localize edges in
much the same way as say the Sobel operator and the Laplacian. Moreover, having been derived

from the Gaussian, they combine smoothing with differentiation.
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Figure 7.14 Fourier transform pairs for derivative of Gaussian operators: (A) g(x) and G(w) for
o=1,2,4, (B) ¢'(z) and G'(w) for 0 =1,2,4, (C) ¢"(z) and G"(w) for c =1,2,4.

To detect vertical edges, for instance, one may choose to convolve with G/ (z)G,(y). The effect is

to smooth in both the z and y directions, and to differentiate in the = direction.
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Center Frequency

From Table 7.1 for the Gaussian:

A e
AePe” Ly = ow/tp
V2r

If we apply this relation to Equation 7.16, we find

. e 2" L, = eV = Q).
2no

9o (z) =

5

Further, by making use of another property of the Fourier transform (Table 7.1), namely

d" .
F| @) = Gy P,
and ignoring phase information,
/ __TT _42/252 F W _—w202/2 _ v
9o (2) = e — e = (' (w)
V2ro?

9

and,
1 2 1 2
%) = o L— - —] T Ly e = O )

The right column of Figure 7.14 plots these frequency domain representations of the Gaussian

operators. To solve for the center frequency for the derivative of a Gaussian, we find the extremum
in G™(w).

0 ..
% (Zw)n G(w)]w:wo =0
The maximum in the function is found by looking for a slope of
wo |n=0 1 2 zero in the G™(w) function:
-1 n—1 Y 7} 6
(") (nwy ™" G(wo) + (iw) %G(wo) =0
o=1] 0 1 V2 . L °
(1")(nwy ™ + (iwp)"(—0"wp) = 0
2 0 1/2 V2/2 nwi™t = o?wit,
(7.19)
4 0 1/4 V2/4
so that, wg = vn (7.20)

g

The table above summarizes the center frequency results for the functions in the right column of
Figure 7.14.
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Equivalent Rectangular Bandwidth

Many methods exist with which to approximate the bandbass characteristics of the Gaussian op-
erators. The equivalent rectangular bandwidth equates the area under the energy density function
|G (w)|? to the rectangular bandpass filter with height |G, (wo)|? and width 2.

EWN(Ga@)P) = [ IGn(w)

Therefore,

J |Gn(w)|2dw
2|Gn(‘*‘10)|2

[ |Giw)me™7" /2 |2dw

2|(z'w)"e—‘”2”2/2\2

w=wo=v/n/c
f(w)Znewatrz dw

2oy e ™

To evaluate the integral in the numerator, we introduce a change of variable:

z = w?o?
dz = 0% (2w)dw, so that
1
/(w)2n67w202dw _ ST /Zn71/2efzdz
and we may write the rectangular bandwidth for the Gaussian in terms of the gamma function,
e 1
W = r = 7.21
T+ ), (7.21)

where, -
I'n+1) = / z"e " dz
0

Equation 7.21 defines the equivalent rectangular bandwidth for n** order derivatives of the Gaussian
operator with scale o. To evaluate it numerically, we will make use of some important properties

of the gamma, function, namely:

F'(n+1) = nI'(n)

;) = Vor
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The value of W can then be found using the following expressions:

_ 1. 1. 2
“o n=0 1 2 n=>0 WZ—F(_):—7r
4o 4o
e 3 1.1 eV 2r
o=110.6267 0.8517 0.8682 n=1 W= 40”_) - (_> 31 (5) = %,
_ 9 W— 62 § 3
2 | 0.3133  0.4259 0.4342 n = = oo L 160 a
4 |0.1567 0.2129 0.2170 3L lp(l) _ 3varm
3202 \2 640

These bandwidth results are tabulated for the spectra illustrated in the right hand column of
Figure 7.14.

7.5.3 Motion
7.5.4 Texture

7.5.5 Template Matching and Normalized Cross-Correlation

Many times there are specific features that we are interested in locating on the image plane.
Consider the visual control of an automobile. In such an application, it seems an effective policy
to identify lane markers, traffic signs, and perhaps other vehicles. One could go about establishing
a complex conjunction of features that indicate a stop sign, for instance, but if we already know
precisely what a stop sign looks like, then we can construct a more specialized visual template
and look for instances of it in the image. This is a generalization of the techniques for finding
lower level features that we discussed earlier. For example, the edge operators listed in Table 7.2
can be viewed as a prototypical edges — relatively high intensities on one side and relatively low
intensities on the other. If we wish, we may think of these templates for edges rather than as finite
difference operators. From this perspective, the convolution of an image with these edge templates

constitutes a pixel-wise product of the template pattern with the image.
This process is just the convolution
(o] oo
hay) = [ [ Haplgto + oy + )dads
—o00 J—00

where t(a, 3) is the template (indexed relative to the center pixel) and g(z+«, y+ 3) is the relevant

region of the image around location (z,y). We may write it as the discrete cross correlation of g
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and t
gt — Zzt(a,ﬁ)g(iﬂ +aay+/6)
a g

The cross correlation is maximized when the intensity function g in the region around location (z,y)
is shaped-like the template function ¢. Maxima in R are minima in the sum of squared differences

between the template and the image region

[e%

B
SN lgla iy +5) — e, B

i=—a j=—p

This is another example of an early processing technique that may be used to highlight image
features that we are interested in such as edges, or textures, and more general templates like
corners of a particular orientation, or the stop sign discussed earlier. However, the result can be

sensitive to variations in ambient brightness, occlusion, shadows, scaling and perspective distortion.

The vector normalized difference operator is somewhat insensitive to contrast, brightness, lighting
and other uncontrollable characteristics of the image formation process. In this technique, both the
template ¢ and the region aroundf g(x,y) are normalized by first subtracting the mean intensity

and then normalizing the magnitude of the resulting function.

The correlation between a normalized template and a normalized image is given by:

Z:E:[($+%y+ﬂ—f)0@+mj+m_iﬂﬂvw)

=—a j——

where, —1 < R(z,y) < +1, is the normalized correlation of the (2a 4+ 1) x (28 + 1) template to the
image at image location (x,y). This correlation depends on (constant) properties of the template:

a B
Azlz > tli+o,j+B)| /(MN)

i=—aj=—p

where M = (2 + 1) and N = (2« + 1) represent the dimensions of the template, and

1/2
[ZZ z+a,j+ﬁ)—f)2] :

i=—aj=—0
The correlation metric also depends on the properties of the image in the region about location
(z,y):

/(MN)
i=—aj=—p

a B
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where M = (2a + 1) and N = (2a + 1) represent the dimensions of the template, and

a B

1/2

V=Y Y (fz+iy+j5)—f)

i=—a j=—p

7.6 Segmentation

7.6.1 Edge Relaxation

The relaxation method is based on heuristics
capturing the probability of seeing edges of
various configurations on the image plane. In
a neighborhood defined by three pixels on ei-
ther side of the edge, four types of terminators
are identified for the central edgelet: type 0,
1, 2, and 3. Consider the two neighborhoods
of the image plane shown in the Figure 7.15.
Forward difference gradients in the easterly
and southerly directions are computed for ev-
ery pixel in the original image plane. For
south gradients (gradients in the i direction),
then the left-right neighborhood is defined
about the south gradient in question. Top-
bottom neighborhoods are constructed about

east gradients in a similar fashion.

1

Figure 7.15 Left-right and top-bottom neighbor-
hoods for a south and east edge gradient, respec-
tively.

The edge relaxation procedure involves iterating over the east and south gradient images look-

ing for evidence supporting the central edge hypothesis. That is, if the central gradient is in the

southerly direction, then we look at the left and right neighborhoods for edges that could be the

continuation of a line containing the central edge. Type 0 neighborhoods are simply terminators

with no evidence of significant intensity gradients adjacent to the central edge. Type 1, 2, and 3

neighborhoods correspond to 1, 2, and 3 significant adjacent edgelets, resectively. The 4 types of

terminators are illustrated in the following Figure 7.16.
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Figure 7.16 The unique types of a left-neighborhood.

Classifying edge types is accomplished by comparing the gradients at neighborhood pixels on a
relative scale to identify the dominant neighborhood characteristics. If we define ¢ as the absolute

cutoff for significant gradients, then the dominant neighborhood type can be estimated as follows:

conf[0] = (m — neighbor[a)])(m — neighbor[b])(m — neighbors|c])
conf[l] = mneighbor|a](m — neighbor[b])(m — neighbor|c|)
conf[2] = mneighbor|alneighbor[b](m — neighbor|c|)

conf[3] = mneighbor|alneighbor[blneighbor|c]

where: (a,b,c) is a sorted list of the gradient magnitudes, a > b > ¢, ¢ = constant, and m =
maz(a,b,c,q) = maz(a,q). The maximum confidence value computed identifies the dominant

neighborhood type.

Conjunctions of neighbor types over left-right or top-bottom neighbors can be used to express
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heuristics that affect the confidence of the central edge. These heuristics are captured in the

following table.

—0
0

—0

-4

confidence|left-type|[right-type] =

S3Hh O O O
O O o9
S O o9

7.6.2 Hough Transform

generalized hough transform

7.7 Binocular Imaging

The process of projecting the irradiance function onto the image plane disgards a great deal of
information. It is not, in general, possible to reconstruct the 3D structure of the world with
a single image — at least two images, acquired simultaneously or in a temporal sequence, are
required to locate a feature in 3D. The geometry of a simple binocular vision system is presented
in Figure 7.17. The geometry of the imaging system can be used to solve for the world frame

coordinate of feature point P.

Referring to the diagram of the z —z plane in Figure 7.17, we define ¢, = atan(“TL), or = atan("TR),

define v;, = 01, + ¢, and ygr = Or + Pr, and the perspective vector (from the camera focal point to
the feature) as (cos(7yr), sin(yr)) and (cos(yr), sin(yr)), respectively for the left and right cameras.

We may write the kinematic loop equations for x and y:

Arcos(yr) —d = Agcos(yr) +d
Arsin(yr) = Agsin(ygr),

where Az, r are the lengths of the feature vectors oriented along the normalized perspective vectors

for the left and right camera, respectively.
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Figure 7.17 The binocular imaging geometry

We have two equations in two unknown parameters, Az g. It is a simple exercise to solve these
relations to yield:

2dsin(yr)
A, = ———M—
sin(yr — L)
2dsin(vyr)
AR = —————
sin(yr — L)

These parameters together with kinematic equations can now be used to solve for the feature
coordinates in the world frame. Notice that the relative vergence of the two feature vectors, yr—y, is
derived from two different sensory modalities. The kinematic configuration of the camera measures
the mechanical convergence of the binocular system, and the offset from image center to feature
measures the angular error from the camera perspective vector to the feature vector for both
cameras. Combining the binocular configuration information with the image plane coordinate of

the feature, there is enough information to reconstruct the 3D geometry of point(s) in the world.
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EXAMPLE: Consider the simple
binocular configuration illustrated
in Figure 7.18. In this geometry,

the stereo system encodes depth

entirely in terms of disparity. Un-
der these conditions

_fa=d _fatd

z z

o

Figure 7.18 Disparity encoded depth in a zero wvergence
binocular configuration

zug = f(z+d)
zup, = f(x—d)

z(up —ug) = 2df

So by eliminating = , we may solve directly for z

2df

(up —ur)

However, 3D reconstruction will prove to be much more challenging than this simple geometric
construction suggests. The real problem is identifiying features in the right image plane that
correspond to features in the left image plane. In other words, how can we make sure that the

feature we look at with the right eye is the same as the feature we are looking at with the left eye?



7.8. VISUAL SERVOING

LN

Figure 7.19 The epipolar constraint

7.8 Visual Servoing
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7.9 Homework Exercises

1. Histogram Equalization
Design and implement an algorithm to equalize the image histogram. Plot the histogram
before and after equalization and submit the corresponding images. See if you can find

images on which equalization works poorly.
2. Convolution

(a) Show that for any two functions, f and g, f *x ¢’ = (f * g)'.

(b) Write a procedure, convolve(f,g,h) that convolves image g with convolution mask f
yielding the filtered image h. Use the Soble operator on test images. Show what the

gradient magnitude image looks like on several images and explain the results.
(c) The Laplacian operator approximates the second derivative of the image function.

i. Derive the Laplacian operator as it appears in the notes using finite differences.

ii. Convolve a selected image with the Laplacian operator and identify pixels where
there is an east or south sign change in the Laplacian image. Show these zero
crossings of the the resultng image.

iii. Use your favorite gradient operator and prune out weak edges. Show the results for

a variety of gradient thresholds.
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3. Edge Relaxation
Implementing an iterative relaxation procedure to enhance the interpretation of edgelets in
and image by propagating corroborating information across the image plane. This involves
scanning the image and at each pixel compute the east and south gradient to adjacent pixels.
For each easterly gradient, evaluate the type of its top-bottom neighborhoods and for each
southerly gradient, evaluate the left-right neighborhood types. After determining the neigh-
borhood types, increment or decrement the edge confidence using the heuristics in the text.
Continue this process until the confidence stabilizes everywhere across the image. The effect
should be to fill in spurious gaps in the edges while eroding edges arising principally from

noise. Test your procedure on several images in the image library and report your results.

4. Fourier Transform
Demonstrate the convolution theorem using the Fast Fourier Transform (FFT) supplied as
part of the LLVS vision environment. A stub for the solution is provided in fft_conwvolve.c.
Pick a convolution operator and show that the convolution (g * f) produces the same result
as F~1[Flg] x F[f]]- How does the placement of operator f within the image array effect the

result? Discuss wrap-around or edge effects, how can you avoid them?

5. Spatial Frequency Filter
Plot the power spectrum (H(ni,n9)?) for sample images. Implement a bandpass filter by
setting H(n1,n2) = 0 for spatial frequencies greater that ncutsr/N (low pass), and less than
Neutof f/N (high pass). Show the resulting image and its power spectrum.

6. Template Matching
Demonstrate the performance of normalized cross correlation for matching templates in the
image plane. Use the zv program to grab images from anywhere you wish that exhibit
repeated occurances of a local image feature. An example of such an image and template
is the circles.pgm image and the circle;emplate.pgm image in the cs603/zv,ision/images/
directory. Locate the position of the template in the image by normalized cross correlation
and write your template into the image at those image coordinates that appear to be good

matches, i.e. those locations in the image where |R(z,y)| > threshold.

7. Hough Transform
Use the generalized Hough transform to accumulate evidence for the existence of circles in

image circles.pgm.
(a) Design a table for casting votes in the Hough accumulator based on the edges (magnitude,
orientation, or both) in the prototypical circle in circle_model.pgm.

(b) Find edges in circles.pgm and use the generalized Hough transform to generate a Hough

accumulator array for the prototype circle. Show the result as an image.
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(c) Threshold the resulting Hough accumulator array to identify locations where the circle
hypotheses have significant support. Indicate these possible locations for the circle pro-
totype in the original image by superimposing a small marker at the likely center of the

circle.

8. Edge Relaxation

Use the edge relaxation technique described in the text to link edges into contiguous lines.
Try your code on a natural image — be advised that you should probably debug your code
on small segments of the image which should produce predictable results. Show how local
evidence propagates throughout the image to yield physically meaningful interpretations. In
your write up, show some of the intermediate edge interpretations which arise while the

procedure converges.

. Stereo Reconstruction

Reconstruct a spatial representation range(z,y), containing the z-coordinate of objects in
the stereo pair castle_left.pgm and castle_right.pgm. This image pair can be found in the
zv_vision/images directory in the ¢s603 common directory. Choose the cycloptic coordinate
frame for this representation so the disparity equation for depth discussed in class works
(you can compare your results to ground truth if you wish, but this takes a great deal of
additional work, so it is optional, but some presentation of your results is required). All

spatial dimensions are given in mm. In the images directory, you will find:

castle x .pgm — pgm formatted images
castle x ;par — image parameters
castlepoints.txt — text description of the ground truth points
castlepoints.zyz — world coordinates of the ground truth
castle x .gt — image coordinates where ground truth is reported

There is a README file in this directory with more detail. The image geometry is arranged

so that corresponding rows in the images can be used roughly as epipolar lines.

Construct the depth map by extracting a neighborhood in the left image and searching the
corresponding row in the right image for the maximum normalized cross correlation. Compute
the disparity for this correspondance and use the disparity relation discussed in class to solve
for the spatial coordinates of this point in space. Do this over an entire sub-image that you
designate. The z coordinate of the result can be saved in an array indexed by the z and y
coordinate of the left image plane. Remap the result into ranges between 0 — 255 and write

the result as a pgm image. Illustrate and comment on your results.



