
54

Since the first microkernel appeared,
improving modularity and flexibility of oper-
ating systems, there has been support for appli-
cation-specific operating systems (ASOS). This
term is often used to refer to the ability for cus-
tomization and reconfiguration to meet the
requirements of specific applications or appli-
cation domains. The general idea is to provide
lower cost and higher performance by elimi-
nating general-purpose operating system fea-
tures that are unnecessary for the application,
and possibly tailoring included features to bet-
ter suit the application being developed.

Embedded applications are proliferating at
an amazing rate with no end in sight. They
are present in many industries such as
telecommunications, automotive, consumer
electronics, medical instrumentation, and

office automation. While each embedded
application is unique, their success generally
depends on the same criteria, such as cost-
effective variations and flexible operation of
the product, minimal time to market, and
minimal product costs. In most embedded
applications, the use of general-purpose oper-
ating systems (GPOS) platforms is not applic-
able because it is too expensive. Embedded
system requirements such as processor per-
formance, memory, and cost are so variable
that a GPOS cannot meet all the needs. Other
approaches, such as avoiding an operating sys-
tem altogether by implementing all the func-
tionality directly, or by developing an in-house
operating system, can limit flexibility and be
expensive. However, a recent survey suggests
that these approaches are used by 66 percent

L. Fernando Friedrich
Federal University of

Santa Catarina, Brazil

John Stankovic
Marty Humphrey

Michael Marley and
John Haskins Jr.

University of Virginia

COMPONENT-BASED SOFTWARE IS BECOMING AN INCREASINGLY POPULAR

TECHNOLOGY AS A MEANS FOR CREATING COMPLEX SOFTWARE SYSTEMS BY

ASSEMBLING OFF-THE-SHELF BUILDING BLOCKS. HOWEVER, MANY OF THE

COMPONENT-BASED METHODOLOGIES THAT USE LARGE COMPONENTS FAIL TO

ADDRESS ISSUES OF SIZE, REAL-TIME PERFORMANCE, POWER, AND COST, AS

WELL AS PROBLEMS ASSOCIATED WITH THE CONFIGURATION PROCESS ITSELF.

THESE ISSUES ARE CRITICAL FOR USING COMPONENTS IN EMBEDDED SYSTEMS.

0272-1732/01/$10.00 2001 IEEE

A SURVEY OF CONFIGURABLE,
COMPONENT-BASED OPERATING

SYSTEMS FOR EMBEDDED
APPLICATIONS

of the embedded systems in Japan,1 primari-
ly because a suitable alternative does not read-
ily exist. Therefore, a key challenge is to
provide an operating system with a high
degree of tailorability to support the embed-
ded system with the required functionality.

An example of a hypothetical product that
would benefit from tailorable operating sys-
tem support is an embedded environmental
control system for a smart home. This system
would control lights, temperature, and appli-
ances by using dedicated microcontrollers
(one or more), a small amount of memory,
and real-time processing capabilities. An ini-
tial design of such a product would benefit by
using an operating system for the target
microcontrollers that only contains those fea-
tures necessary for the stated requirements of
the application. For instance, in this scenario
there is no need for a file system or for process-
es, networking, or security and protection
facilities as provided by a GPOS.

Now, suppose that market conditions war-
rant the addition of a burglar alarm system to
the smart home control system, as well as the
ability for different people to program differ-
ent environmental settings into the unit over
the Internet. This new product requires addi-
tional functionality over the original product,
namely networking components, a file system
for system logging, and possibly process sup-
port. Ideally, the product designer can add this
new support easily and analyze the resulting
collection of software in terms of correctness,
cost, and speed. In addition, the product
designer should be able to quickly determine
if it is possible to dynamically reconfigure the
original product to handle this new func-
tionality, so that consumers do not have to
replace their original environmental control
system. Many other embedded applications
have similar requirements of low cost, high
tailorability, quick time to market, and need
for reconfiguration. A solution approach
receiving increased attention is component-
based software for embedded systems.

Can this methodology be used effectively
to support the delivery of cost-effective, high-
quality, operating system-like software
entwined with application code for embed-
ded reconfigurable systems? Obviously there
are many advantages to component-based
design. For example, it minimizes the amount

of new code that must be written when an
application is developed and also provides the
means for composition; essential ingredients
for rapidly deployable embedded systems. In
addition, an approach dealing with cus-
tomization and reconfiguration issues allows
fine-tuning an embedded application. How-
ever, many of the component-based method-
ologies utilize large components and do not
address size, real-time performance, power,
and cost issues. Another main problem with
component-based systems is the configura-
tion process itself. Issues such as selection,
parameterization of components, analysis, and
choice of proper hardware and memory lay-
outs are not fully addressed. Finally, some
future products will be multifunction; as such,
dynamic mode switching and environment-
specific tailorability will be needed.

Component software
The literature reflects a lack of agreement

and an overloading of component software
terminology, offering a number of definitions
of what a component is or should be.2-6 For
instance, Clemens Szypersky defines a soft-
ware component as

a unit of composition with contractually

specified interfaces and explicit context

dependencies only. A software component

can be deployed independently and is sub-

ject to composition by third parties. 7

For example, a component provides prefabri-
cated functional building blocks to be reused
by rearranging them in new compositions.
One example might be using prefabricated
avionics software in a complex command and
control application. In other words, compo-
nents can be thought of as building blocks or
units of independent deployment used for
third-party composition and having no per-
sistent state (there is no differentiation
between the component and its copies).

The majority of the definitions point out
certain characteristics that are worth repeat-
ing. First of all, terms in the literature that
refer to a component (unit, piece of software,
or abstraction) do not indicate any particular
implementation technology. For instance,
there is no need for a component to contain
classes and be constructed using object tech-

55MAY–JUNE 2001

nology, although that usually is the case. It
could contain traditional procedures or it
might be realized using any other approach
and provide its functionality using any tech-
nology. Also, the term unit does not provide
any indication about the size of the compo-
nent. However, there are hierarchies of com-
ponents, so size can vary considerably.

Second, the term independent deployment
refers to the fact that components are typical-
ly unaware of the contexts in which they can
be used. In this case, to be able to deploy a
component independently means that a com-
ponent needs to be well separated from its
environment and other components. There-
fore, a component encapsulates its constituent
features, and it will never be deployed partial-
ly. This requirement usually has performance
implications and is one problem when trying
to employ such components in an embedded
system. Third, if a component is to be used for
composition then it has to be sufficiently self-
contained with a clear specification of what it
requires and provides. In other words, a com-
ponent has an interface specification that
describes what the component does and how
it behaves when its functions or services are
used. Through the specification, any potential
user of those functions can use the component
in his application without preoccupying him-
self with how those functions are actually per-
formed. Also important is that a component
can be viewed as a white box or black box
building block depending on the visibility that
the users have of its interface implementation.
If a user has access to a component’s source
code, then it is said to be a white box compo-
nent, since it implies some degree of extension
and customization. If, on the other hand, a
component is available with no source code,
and may be used just as it is, it is described as
a black box component. Finally, besides the
specification of provided interfaces, compo-
nents also are required to specify their resource
and other needs. These needs are called con-
text dependencies, referring to the context of
composition and deployment required.

Component size
Although the terms used to refer to a com-

ponent do not give any indication about its
size, the right size is one that makes it most
useful. This means a component must have

some quality issues such as correctness, robust-
ness, careful specification, and so forth. Also,
a component must provide the right set of
interfaces without restricting context depen-
dencies. For example, a component should
provide all required software encapsulated in
it, but this would increase its size. On the
other hand, a component could be designed
to provide maximum reuse capabilities with
a likely increase of context dependencies. As
both approaches present inconveniences,
there has to be some balance in order to come
up with the right size component.

First, component-based architectures are
considered modular, and so naturally layered,
leading to a natural distribution of function-
ality. This modular approach makes the
dependencies more explicit, helping to reduce
and control them. Therefore, modularity is a
sort of precondition to defining components
and their granularity. A system can readily be
partitioned into units of varying size and
coherence. Second, to achieve the best gran-
ularity of components, the rules governing the
partitioning vary from case to case and may
depend on many different aspects, such as
abstraction, analysis, compilation, fault con-
tainment, and loading.7 Depending on these
aspects, a component could have different
granularity. For example, as a unit of abstrac-
tion, a component could be an abstract data
type, such as a stack or a queue, while as a unit
of fault containment and loading, a compo-
nent could be an entire file system.

Component interfaces
A fundamental principle of component-

based design is that a component has an inter-
face. All connections between components
occur through interfaces that can be defined as
a set of functions invoked by other compo-
nents. To guarantee component independence,
component software maintains a strict separa-
tion between the interface specification and the
interface implementation. The interface
specification of a component is a well-known
contract specifying how a component’s func-
tionality is accessed. In addition, the specifica-
tion provides the necessary information for
both those implementing the interface and
using the interface. Besides functional aspects,
an interface specification may also contain non-
functional requirements, such as performance.

56

COMPONENT-BASED OSS

IEEE MICRO

To develop useful interfaces, understand-
ing the behavior of the participants of key
activities in a domain is effective. In this case,
component modeling and domain modeling
are helpful. A domain model sets the context
for the area being studied, which can be a large
area or a part of a specific application. The key
thing about domain models is the possibility
to point out and describe important compo-
nents, their relationships, and the meaning-
ful collaborations between them in the
domain of interest. In component modeling,
the interactions between components can be
analyzed and captured, which is helpful for
interface specification and its implementation.
Interactions between components are called
collaborations, which may be complex,
involving many parties and an agreed
sequence of actions between them.

The main elements of an interface are its
list of functions with the corresponding para-
meters expected from its callers and the spec-
ification model that provides the means by
which each service may be understood. How-
ever, it might be necessary to have more infor-
mation about a component to determine its
behavior.8 In this case, besides the basic con-
tract, which is composed of the functions,
parameters, and possible exceptions, an inter-
face through its specification model can con-
tain another three levels of contract:
behavioral, synchronization, and quality of
service.

Components, tools, and infrastructures
To be useful, components must be imple-

mented, assembled, and interact with other
components. Therefore, they require tools
that may be specialized to component assem-
bly and construction, and they also require
some basic support structure (infrastructure)
providing the means for their interaction.

First, it is helpful to know what kind of pro-
gramming languages can be used in compo-
nent software development and if there are
some special requirements. For example, as
component programming supports incre-
mental loading of code, late binding has to be
supported because interactions with other
components need to be dynamic. Other fea-
tures, such as polymorphism, information
hiding, and safety also are meaningful. Lan-
guages such as C, C++, Modula-2, or

Smalltalk are not truly component-oriented
programming languages because they lack the
support for encapsulation, polymorphism,
type safety, module safety, or any combina-
tion of these.7 However, almost any pro-
gramming language can be used for
developing components.

The development of component software
appears to be more dependent on supporting
tools. Although most of the traditional tools
of software engineering for design, imple-
mentation, and maintenance will continue to
be used, new tools will be necessary. Today,
most of the tools concentrate on component
assembly normally performed by instantiat-
ing and connecting component instances and
by customizing component resources. Some
assembly tools assume that all component
instances have a visual representation at assem-
bly time and then use powerful graphical
builder tools to assemble components. An
important aspect in the assembly process is
that it should be automated and repeatable
wherever a modification is necessary regard-
ing the availability of future versions of com-
ponents.

Finally, there needs to be some kind of envi-
ronment that supports components con-
forming to certain standards and allows
instances of these components to be attached
into the component environment. This infra-
structure should establish environmental con-
ditions for component instances and regulate
the interaction between component instances.
All popular component infrastructures pro-
vide mechanisms that allow development in
multiple languages and execution across mul-
tiple hardware platforms. Examples of such
infrastructures include Corba (common
object request broker architecture), COM
(Component Object Model), DCOM (Dis-
tributed COM), and Sun’s JavaBeans.9-12 As
reusable components have been a trend in
software engineering for some time, Corba,
COM, DCOM, and JavaBeans all address
these concerns. These systems serve impor-
tant, but different needs than the ones
addressed in this article. They provide a kind
of macroscopic-level infrastructure for com-
ponent-based software.

More recently, the Jini architecture has been
defined to address the need to plug compo-
nents worldwide into networks.13 In Jini’s

57MAY–JUNE 2001

world, the components to be plugged into a
network can be large software components,
entire applications, hardware devices, and
embedded systems. The Jini system depends
on and works with Java and consists of sets of
interfaces. These interfaces include distributed
events, a two-phase commit protocol, and var-
ious functions involved with resource alloca-
tion and reclamation. Also included is support
to aid in supplying and finding services through
lookup and discovery components. The system
is very open-ended, as it needs to be to address
worldwide networks and evolution.

A key ability in Jini is the dynamic plug in
ability and concepts that support this capabil-
ity, which may prove useful in some aspect of
application specific operating systems where
such kernels must support hot swappable soft-
ware. A key difference between Jini and Corba,
for example, is Jini’s ability to download code
to the client that is then used to communicate
with the server. This approach permits changes
to servers to be evolvable and be propagated
to clients at the time they are to be used. Jini
is also serving a different need than the one
addressed in this article.

Component-based operating systems for
embedded applications

Examples of component software outside
of graphical user interfaces and compound
documents are still rare. As stated by Bertrand
Meyer, “An area that is crying out for com-
ponent-based development is the nec plus
ultra of software: operating systems.”14 This
section presents a survey on systems that refer
to component-based development as a design
methodology and are in some sense centered
in providing configurable operating systems
for embedded applications. The survey
includes academic and industrial systems.
Most systems present some sort of ability for
customization and reconfiguration to meet
application specific requirements. The survey
is meant to investigate how the component
software methodology has been used to pro-
vide configurable operating systems for
embedded systems. Based on some of the
terms and concepts on component software
presented earlier, we try to identify how each
one of the systems deals with the following
issues, along with identifying some special fea-
tures regarding embedded systems:

• What is a component? How are they
defined?

• Is the system capable of performance
analysis?

• How is the composition of the system
performed?

• How are the components connected?
• Is dynamic reconfiguration possible?

Academic systems
We are interested in systems built in acad-

emia that address issues such as configuration
and reconfiguration, composition of operating
systems, component-based software for oper-
ating systems, and operating system compo-
nents for embedded applications. Recent
projects such as Exokernel15 and SPIN16 pro-
vide some form of operating system config-
urability/extensability, allowing the operating
system to be tailorable to application specific
requirements. However, their configurability
is limited in that they define a fixed amount
of functionality that must be used in all the
applications. In addition, these systems are
not related to component-based software or
embedded systems.

The surveyed systems include Choices, OS-
Kit, Coyote, PURE, and, 2K. Most of these
systems have in common the intention to deal
with operating system construction through
composition. Therefore, they all try to define
operating system components. However, they
use different design approaches and infra-
structures.

Early systems like Choices and OS-Kit
address operating system configuration and
customization issues as well as component
software for operating systems.17-18 Choices
uses a complex object-oriented framework to
build a full operating system. In contrast, OS-
Kit provides a set of operating system com-
ponents that can be combined to configure an
operating system. OS-Kit does not supply any
rules to help build an operating system. More
recent systems such as Coyote address the
problem of configuration and reconfiguration
using approaches not based on object-orient-
ed technology.19 Coyote is focused on com-
munication protocols. However, its ability for
reconfiguration might be adopted for operat-
ing system and embedded application areas,
hence we cover it here.

Another recent system, PURE, is explicit-

58

COMPONENT-BASED OSS

IEEE MICRO

ly concerned with providing operating system
components for configuration and composi-
tion of operating systems for embedded appli-
cations.20 PURE uses an object-oriented
methodology to provide different components
for configuration and customization of oper-
ating systems for embedded applications.
Another recent system, 2K, is more concerned
with adaptability issues to allow applications
to be as customizable as possible.21 In addi-
tion, 2K is also concerned with component-
based software for small mobile devices, or
PDAs (personal digital assistants).

Choices. Choices is an object-oriented, cus-
tomizable operating system whose main goal
is to allow users to easily optimize and adapt
the system for specific application behavior
and workloads. To allow customization,
Choices uses frameworks and subsystems. The
design of Choices consists of a hierarchy of
frameworks representing the conventional
organization of an operating system into lay-
ers. In Choices, a framework consists of a num-
ber of classes representing system entities such
as disks, memory, schedulers, and so forth. For
example, for the process subsystem there is a
framework that is composed of classes such as
Process, ProcessContainer, and ProcessMan-
ager that define methods responsible for imple-
menting the functionality of the framework.
The ProcessManager class defines methods for
creating, suspending, and killing processes. It
also manages a global ready queue and the time
slice timer. These abstract classes can be
thought of as components that can be config-
ured to perform different roles.

Customization is achieved by allowing sub-
classing of the framework classes and by over-
riding methods. For example, a process
component can incarnate the behavior of one
of the following subclasses: Application-
Process, SystemProcess, InterruptProcess, or
Gang. Classes belonging to a framework com-
municate with each other by calling methods.
The interface of a framework is used by
clients, which are entities outside the frame-
work. Dynamic code loading is also provided
by subclassing at runtime. As an example, the
framework device management is composed
by classes, such as DeviceController and
Device. If a new device driver needs to be
added, it can be done by loading subclasses of

the DeviceController and the Device classes.
Regarding configurability and composi-

tion, Choices provides an interactive graphi-
cal tool, OS View, which allows both system
and user-level services to be dynamically
reconfigured, customized, and evaluated. The
Choices viewer explores the system, scanning
and browsing all operating system objects,
which are represented as graphics images. In
addition, alternative services can be loaded or
activated in the system. For example, in the
memory management framework, different
page replacement policies can be interactive-
ly loaded and evaluated through performance
statistics. Therefore, it also provides perfor-
mance information. No special features exist
for embedded systems. A licensed release of
Choices can be obtained at http://choices.
cs.uiuc.edu/choices/.

OS-Kit. The University of Utah’s OS-Kit is a
domain-specific set of software components
intended to facilitate construction of stand-
alone systems on Intel x86 hardware. The OS-
Kit authors argue that the boring details of
constructing stand-alone systems are more
easily handled through the OS-Kit compo-
nents, thus freeing developers to perform
research on their intended area of focus.

An example of a component in the OS-Kit
is the Ext2 file system, a subset of the larger
Linux legacy code portion of the OS-Kit. The
Ext2 subset is an independently deployable
unit with no persistent state. To say that the
Ext2 subset has no persistent state is not a con-
tradiction. Instances of file systems maintain
persistent data, and the Ext2 code subset of
the OS-Kit is merely the blueprint for con-
structing and maintaining an instance of an
Ext2 file system.

The authors of the OS-Kit went to great
lengths to minimize the number of interac-
tions and dependencies between components.
This increases flexibility between the compo-
nents and flexibility between the components
and code created independently by the kernel
developer. To provide usability, OS-Kit adopt-
ed a subset of COM as the basic framework
allowing components to interact with each
other efficiently through well-defined inter-
faces. However, in COM-based systems, com-
ponents run within an address space with no
protection between them.

59MAY–JUNE 2001

Analysis capability in the OS-Kit is pro-
vided by the profiling component library. This
segment allows the kernel developer to link
an instance of the GNU profiler (gprof) pro-
gram directly into the kernel. Gprof performs
its data reduction and analysis of the kernel
immediately before the kernel exits and pro-
duces its output to the console. A minimal
API is also provided to control the profiling
during the execution of the kernel.

Finally, composition in the OS-Kit is left
solely to the kernel developer; there are no
tools to help with this. The OS-Kit is essen-
tially a collection of code segments that must
be integrated and connected manually by a
third party. This system does not focus on
embedded systems. OS-Kit provides open
source code that can be downloaded from
http://www.cs.utah.edu/projects/flux/oskit/.

Coyote. The purpose of Coyote is to support
the construction of communication protocols
such as atomic multicast, group remote proce-
dure call (RPC), group membership, and pro-
tocols needed for mobile computing. In
Coyote, those protocols are called composite
protocols and represent one of the fundamen-
tal components of the system. Other compo-
nents are microprotocols, events, and a runtime
system. Composite protocols assume a typical
hierarchical communications protocol stack.
They are considered a coarse-grain module.
Within each level of this protocol stack Coy-
ote supports the nonhierarchical construction
of that layer using microprotocols. Examples
of microprotocols include message ordering
schemes or retransmission policies. Micropro-
tocols are considered fine-grained modules that
can be registered to handle events. Hence, in
this system a component is a layer of a com-
munication protocol stack and a microcom-
ponent is a microprotocol used to construct a
particular layer of the system.

Events in Coyote are responsible for initiat-
ing execution activity within a composite pro-
tocol. They can be detected and raised by the
runtime system or by microprotocols. The
runtime system is responsible for managing
execution and implementation of the event
mechanism. Basically, it provides a kind of
storage for the messages and allows multiple
microprotocols to access them. While embed-
ded systems might require communication ser-

vices, it seems that most would not employ the
type of communications supported by Coy-
ote. It would be interesting to develop a set of
lower level and efficient protocols for embed-
ded systems using the Coyote approach. On
the other hand, such features as multicast and
mobile computing support might be useful for
some types of embedded systems.

In Coyote, there are no analysis tools to
determine correctness or performance. Com-
position tools are minimal in that protocols
and microprotocols are in files and they are
composed offline by the designer. The overall
framework that supports this system is con-
tained in read-only files. There are user-mod-
ifiable files that contain library-like functions
and standard protocols and policies, and there
can also be user supplied files with their own
developed microprotocols. A key aspect of
configurability in Coyote is the support for
events and event handlers. It is the raising of
an event that causes execution of a micropro-
tocol. Reconfiguration is supported by the
binding and unbinding of event handlers.

PURE: Portable, Universal Runtime Executive.
The PURE system approach was developed
to offer an operating system tailored to the
application. The goal is to construct a highly
configurable system providing the means for
the application designer to choose the need-
ed functionality. Although PURE claims not
to be restricted to any application area, its
main focus is on deeply embedded systems.
The term is used to refer to systems operating
under extreme resource constraints in terms
of memory, CPU, and power consumption.

The design approach of PURE is based on
two main concepts: a program family and an
object orientation. The program family concept
is provides a sort of hierarchical design in such
a way that a minimal subset of system functions
is used as a platform to implement extensions or
minimal system extensions. Object-orientation
is used as the implementation discipline.

Partitioning in PURE is based on abstrac-
tions, and the units used to build a system may
have different granularity and complexity. The
smallest building unit is a class. Therefore,
PURE can be viewed as a class library. For
example, the building unit responsible for
thread control is composed of 45 classes
arranged in a 14-level hierarchy. Some of these

60

COMPONENT-BASED OSS

IEEE MICRO

classes are counter (implementing a waiting
list of threads), schemer (implementing thread
scheduler), monitor (providing per thread
synchronized operation of some critical func-
tions), filing (providing the means to keep
track of the allocated threads), and active (cur-
rently executing thread). These classes can be
customized to meet application specific
requirements. Although classes in PURE are
claimed to be very fine grain, some like the
schemer are coarse grain.

The components in PURE are arranged in
a structure made of a nucleus and a nucleus
extension. The nucleus, called CORE (con-
current runtime executive), is responsible for
the implementation of a minimal subset of
system functions for scheduling of interrupts
and threads. CORE is made of four building
units. These units can be composed in such a
way as to provide the desired functionality.
For example, one can have a minimal system
only supporting low-level trap/interrupt han-
dling. Features that represent some kind of
extension, called minimal system extensions,
are added to the system in the nucleus exten-
sion, called NEXT, or Nucleus Extension.
While not explicit, the highly configurable
and fine-granular structure provided in this
system allows for better support of embedded
applications requirements such as memory
and time requirements. However, it is not
clear how it is determined if the requirements
are met. A key aspect of embedded applica-
tions—interrupt handling—is also specifical-
ly addressed by PURE.

PURE does not provide any kind of analy-
sis tools to determine performance. For config-
uration purposes, PURE provides tools that let
users specify their needs and requirements for
the customized system. The approach uses an
annotation language to provide the necessary
information such as dependency and attribut-
es, for the generation tool to be able to evaluate
and choose the right building units for combi-
nation. The result of the configuration process
is a sort of make file that produces the desired
system. PURE is not available as source code.

2K. The 2K system is a reflective, compo-
nent-based operating system whose main goal
is to provide a generic framework to support
adaptation in a network-centric computing
environment. The ability of 2K for adapta-

tion is based on parameters such as network
bandwidth, connectivity, memory availabili-
ty, communication protocols, and hardware
components. The 2K operating system is built
on top of Corba. It uses reflection (metalevel
data and methods on that data) offered at the
object request broker (ORB) level to provide
the means for adaptation.

A component in 2K is a dynamically load-
able unit that is stored in a dynamic link
library (DLL). The components can be loaded
or unloaded depending on the user’s needs
and the garbage collection algorithms. After
being integrated in the 2K environment, a
PDA can select a category of components
(such as spreadsheets) to interact with the
components belonging to that category (Excel
or Lotus, for example). Consequently, it seems
that the granularity of the components sup-
ported by 2K is coarse grain, however a com-
ponent can also be responsible for a discipline
such as thread pool or thread per connection
(100 lines of code) to implement a concur-
rency policy.

There is no analysis tool to determine cor-
rectness and performance. However, compo-
nents can access the state of the system to
determine if they need to adapt. The system
provides configuration and reconfiguration
capabilities based on prerequisite dependen-
cies and dynamic dependencies. The prereq-
uisites for a component are a specification of
requirements, such as hardware resources and
software services, that are necessary to load,
configure, and execute the component.
Dynamic dependencies describe the depen-
dencies between a particular component and
other components in a running system. To
provide this information an object called
ComponentConfigurator is assigned to each
component. In addition, 2K enables adapta-
tion by letting system components reason
about their interactions with other compo-
nents and make adaptation decisions. The
contribution of 2K for embedded application
is the mechanism it uses to provide adapta-
tion/reconfiguration capabilities. Software and
documentation related to 2K is available at
http://choices.cs.uiuc.edu/2K/.

Industrial systems
There are about 100 real-time, embedded

operating systems on the market. Many of

61MAY–JUNE 2001

them do not provide configuration capabilities
or are not customizable. Others, such as QNX
and VxWorks provide optional modules that
can be statically or dynamically linked to the
operating system.22-23 However, these modules
rely on a basic kernel and are not designed
using a component-based approach. The
modules are designed with no intention of
being used in other environments. This sur-
vey of industrial systems includes JavaOS,
Jbed, MMLite, Pebble, icWORKSHOP, and
eCos. Some of these are or were products
(JavaOS, Jbed, and icWORKSHOP), while
others are still under development (MMLite,
Pebble, and eCos). A common feature of all
these systems is that they provide a compo-
nent-based operating system approach for
embedded applications. However, they use
different approaches to provide interaction
between components.

JavaOS, developed by Sun Microsystems
and IBM, and Jbed, developed by Oberon
Microsystems, are basically designed for Java
technology.24-25 On the other hand, MMLite,
supported by Microsoft, uses a lightweight
COM as its component infrastructure.26 Other
systems, including Pebble, IcWORKSHOP,
and eCos are not based on any popular com-
ponent infrastructures.27-29 Pebble, supported
by Lucent Technologies/Bell Laboratories,
provides a component infrastructure that is
based on protection domains and portals.
However, its main concern is not embedded
systems. IcWORKSHOP, developed by Inte-
grated Chipware, is designed for building com-
ponent-based, application-specific operating
systems (ASOSs) for application-specific stan-
dard processor (ASSP) hardware. The purpose
of eCos, develop by Cygnus, is to provide an
open, embedded-software infrastructure.

Java-OS. Java-OS is an operating system specif-
ically developed for embedded systems and net-
work computers. Actually, there are three
Java-OSs available: for business, consumers, and
network computers (see http://www.sun.com/
javaos/). In general, Java-OS has a database of
configuration information consisting of named
Java objects. This database helps support
dynamic reconfiguration. Information in this
database includes application-specific settings;
which devices are present and which software
components must be installed for a user. As an

example, if a new device is added, the operat-
ing system detects this fact, adds an entry into
the configuration database, and fires a configu-
ration change event.

Java-OS consists of a boot loader, a micro-
kernel, and a runtime. The booter loads the
Java-OS (possibly off the network) and acti-
vates the microkernel. A basic microkernel is
always included. The microkernel includes
support for threads, low level memory man-
agement, timers, interrupts, and monitoring.
The microkernel does not support multiple
address spaces or interprocess communication
(IPC). The microkernel also supports a run-
time environment set of services. This includes
the Java virtual machine, a garbage collector, a
service loader, and core classes. This can be
considered a fairly large set of required func-
tionality as compared to the icWorkshop
approach. While the developers of Java-OS
make certain claims for Java-OS real-time and
embedded systems performance, it is not clear
how one performs a global analysis on the
resultant system to determine if memory,
power, and timing constraints are met.

Jbed. Jbed is a real-time operating system with
a kernel designed for embedded Java. It is con-
sidered a Java platform for real-time and
embedded systems; other Java platforms that
appear as candidates are EmbeddedJava and
JavaCard. The basic differences between these
Java-based platforms are their differences in
support for threads, garbage collection, float-
ing-point numbers, and so forth. In Jbed, the
kernel is actually the Java Virtual Machine and
is also called the runtime system or kernel
level. The Jbed runtime system provides a
thread scheduler, memory allocation, and
garbage collection as a minimal system. This
configuration requires up to 64 Kbytes of
RAM. Other possible configurations include
the minimal system with TCP/IP and a Web
server (128 Kbytes required) and the minimal
system with network loader and a flash com-
piler for translation of Java code into machine
code on the target upon loading (256 Kbytes
required). In terms of operating system ker-
nel configuration, these are the options appar-
ently available, meaning that operating system
kernel components are coarse grained. In
addition, there are no dynamic configuration
capabilities at that level. At the kernel level,

62

COMPONENT-BASED OSS

IEEE MICRO

Jbed is concerned with some special features
for real-time and embedded applications such
as a small memory footprint, real-time thread
support, and deadline scheduling. However, it
is not clear how Jbed determines if require-
ments such as memory and timing are met.

On top of the kernel level, components
such as peripheral device drivers, communi-
cation device drivers, network loaders, and
libraries are supported. These components are
called embedded applications and can be
downloaded on demand. Therefore, at this
level Jbed provides dynamic configurability.
Finally, the application layer supports a
client/server model. At this layer, applications
such as process control, remote diagnosis, and
alarm systems are called clients. The clients
use the components (embedded applications)
through server programs (such as debugging,
remote control, and Web servers) that provide
management of those components. Accord-
ing to Jbed documentation, servers allow
clients to perform remote diagnosis of embed-
ded applications, replace components in the
field, and remotely control embedded systems
from a PC. However, these capabilities are not
available at the operating system kernel level.

Jbed provides a development tool, Jbed
IDE, that is a convenient cross-development
and visualization environment for embedded
application configuration. At the kernel level,
it seems that the configuration is just a mat-
ter of choosing one of the available configu-
rations mentioned above.

MMLite. MMLite is an object-based, modu-
lar system architecture that provides a menu
of components for use at compile-time, link-
time, or runtime to construct a wide range of
applications. A component in MMLite con-
sists of one or more objects. Multiple objects
can reside in a single namespace. When an
object needs to send a message to an object in
another namespace for the first time, a proxy
object is created in the sending object’s name-
space that transparently handles the marshal-
ing of parameters.

A unique aspect of MMLite is its focus on
support for transparently replacing compo-
nents while these components are in use
(mutation). MMLite uses COM interfaces,
which in turn support dynamic reconfigura-
bility on a per-object and per-component

basis. However, COM does not provide pro-
tection between the components. In MMLite
it is not clear if it provides isolation between
components or not.

The base menu of the MMLite system con-
tains components for heap management,
dynamic on-demand loading of new compo-
nents, machine initialization, timer and inter-
rupt drivers, scheduler, threads and
synchronization, namespaces, file system, net-
work, and virtual memory. These compo-
nents are typically very small (500 to 3,000
bytes on x86), although the network compo-
nent is much larger (84,832 bytes on x86).
The resulting MMLite system can be quite
small: the base system is 26 Kbytes on x86,
and 20 Kbytes on ARM. It is not clear to
what extent MMLite provides users with the
ability to easily select components that the
MMLite developers write, and to what extent
users themselves define and utilize their own
new components. Although there has been
an apparent emphasis on developing mini-
mal-sized components (in number of bytes),
analysis tools regarding the runtime perfor-
mance of components due to namespace res-
olution and the creation and loading of proxy
objects is lacking.

Pebble. Pebble is a new operating system
designed to be an efficient application-spe-
cific operating system and to support com-
ponent-based applications. It also supports
complex embedded applications. As an oper-
ating system it adopts a microkernel archi-
tecture with a minimal privileged mode
nucleus that is only responsible for switching
between protection domains. The function-
ality of the operating system is provided by
operating system user-level components
(servers). These components can be replaced,
augmented, or layered.

The programming model is client/server;
client components (applications) request ser-
vices from system components (servers).
Examples of system components are the inter-
rupt dispatcher, scheduler, portal manager,
device driver, file system, virtual memory, and
so on. The Pebble kernel and the essential
components (interrupt dispatcher, scheduler,
portal manager, real-time clock, console dri-
ver, and idle task) need approximately 560
Kbytes of memory. Components are like

63MAY–JUNE 2001

processes, each one executes in its own pro-
tection domain (PD).

In Pebble, a PD includes a page table and a
set of portals. Portals provide communication
between PDs. For example, if there is a portal
from PD1 to PD2, then a thread executing in
PD1 can invoke a specific service (entry point)
of PD2. Therefore, components communicate
through transferring threads from one PD to
another using portals.

The PD concept together with the portal
concept can be understood as a component
infrastructure. While Pebble PDs provide the
means to isolate the components, portals pro-
vide the means for components to communi-
cate with each other. Instantiation and
management of portals are performed by an
operating system component, Portal Manag-
er. For instance, the instantiation process
involves the registration of a server (any system
or application component) in a portal and the
request of a client for that portal. In Pebble, it
is possible to dynamically load and to replace
system components to fulfill applications
requirements.

Based on the description of the system,
there are no composition tools to provide the
construction of the system. Also, there are no
analysis tools to determine correctness or per-
formance. It seems that what makes Pebble an
operating system for embedded applications is
its capability for dynamic configurability and
its ability to safely run untrusted code.

icWORKSHOP. Real-time operating system
vendors have provided tailorable kernels for
some time. However, the degree of tailorabil-
ity has been at a fairly high level (you can
choose to include a file system or not, for
instance) and static. The icWORKSHOP
from Integrated Chipware allows the rapid
customization of a real-time operating system
from small granule components. The system
components are collected into a toolkit called
icPARTS. Their components include tasks,
queues, timers, file management, clocks, sem-
aphores, error handling, I/O, sockets, inter-
rupt handling, IPC, floating point, mutexes,
pipes, condition variables, buffer manage-
ment, schedulers, board configuration class-
es, linked lists, memory management,
networking, kernel locks, and directories.
These components vary in functionality and

size quite a bit, but they are much lower level
than for Corba or even OSKit components.
Users can tailor any of these predefined com-
ponents or add new ones. For example, a user
might add an avionics or telecom specific
component. While not explicit, the fine gran-
ularity involved in this system allows for bet-
ter control over issues such as maintaining low
overhead to meet time requirements, handling
interrupts quickly, performing a more global
analysis of memory and time requirements,
and controlling device drivers. The domain
for their product is then any application and
embedded system that might require a tailored
real-time operating system.

Integrated Chipware provides three ready-
to-run kernels as well as multiple options for
various activities such as scheduling. A devel-
opment tool called icBUILD is included in
icWORKSHOP. This tool contains support
for composing an application specific operat-
ing system and various visualization and per-
formance monitoring capabilities. The claim
is that it is geared for custom real-time devel-
opment. This claim seems to stem from the
level of components available as well as a soft-
ware logic analyzer that helps in performance
measurement. Browsers and editors are sup-
plied to let a designer view and modify com-
ponents and incorporate them into a
functioning kernel via button clicks, accord-
ing to the company. Debuggers and statisti-
cal profilers are part of the analysis capabilities.
It does not seem that this system supports
dynamic reconfigurability.

eCos (Embedded Cygnus Operating System).
The eCos embedded operating system was
designed and constructed to provide a stan-
dardized framework to be used in the creation,
extension, and configuration of embedded
system software. The extensibility of the sys-
tem is achieved through the use of open pub-
lished APIs. This lets developers extend the
core components and develop new or modi-
fied components.

The building unit in this system varies from
a package (a coarse grain component) to a
configuration option (a very fine grain com-
ponent). The configurability of the system is
achieved by selecting package options as well
as including and configuring components
within a package. The system is composed of

64

COMPONENT-BASED OSS

IEEE MICRO

packages such as the kernel, µITRON com-
patibility layer, hardware abstraction layer, C
library, watchdog device, and I/O subsystem.

Each package can contain any combination
of configuration options, components, or even
another package. For example, options such
as “NULL is a Good Pointer” and “Return
Error Codes for Bad Params,” as well as com-
ponents such as semaphores, mailboxes, event
flags, alarm handlers, and version information
can be combined for the package µITRON
compatibility layer. In addition, eCos sup-
ports configurability at multiple levels. On the
highest level, components can be switched in
and out. For example, semaphores could be
included or not in the µITRON package. On
a lower level, options regarding the compo-
nents can be configured—termed microcon-
figuration. For example, the modification of
the kernel to support 16 versus 32 priority lev-
els would be considered a microconfiguration.
On the lowest level, the source code itself can
be modified to make even the smallest of
changes.

The eCos system also has a good deal of tool
support. It includes a configuration tool that
can be used to select components and config-
ure those components to get the precise func-
tionality that is desired. The configuration
tool provides a graphical user interface that
lets the developer easily select options and
configure the system. Once the system is con-
figured, the tool generates a build tree con-
taining header files that is used to build the
system. During this process, the tool does
dependency checks of the components that
are included in the system, as well as depen-
dency checks and component requirements
for the application code. It should be appar-
ent from the way in which a system is built
that this is only a static framework. There is no
support for dynamically loading components
during runtime.

In addition to the configuration tool, eCos
provides test cases for each configurable feature.
The test cases can be run to verify the validity of
the system. These test cases are automatically
linked into the system during build time. Cur-
rently, eCos has developed an automated testing
infrastructure, but has not yet released it to the
public. Although eCos is a commercial system,
its source code can be downloaded from
http://www.cygnus.com/ecos/.

Summary of academic and industrial systems
While somewhat simplistic, to better

understand software components for embed-
ded systems, it is possible to consider compo-
nent-based systems at three levels. At the
highest level, systems such as Corba, COM,
and JavaBeans often use large-scale compo-
nents. Entire systems or subsystems are used
and the components themselves often are
applications. The cost of communications
between interfaces is generally high, but due
to the large-scale aspects of the components
this is not usually a problem.

At the second level, component-based con-
figuration of operating system functionality,
such as that supported by OSKit, is used.
Here, components deal with typical operating
system functionality, but do not really
attempt to support embedded systems. Final-
ly, at the third level, fine-grained components
that include operating system-like functions
and user-supplied, application-specific func-
tions, such as those for avionics or telecom-
munications, are used. The components
attempt to support low-overhead interfaces,
sensors, actuators, fast interrupt handling,
and so forth. Therefore, regarding the size of
the components, it is possible to conclude
that there is no common definition. Based on
the reviewed systems, most of them use com-
ponents with different granularities. Analy-
sis tools for how well the configured system
will meet time, memory, and power con-
straints seem very limited. A few systems pro-
vide profiling and debugging capabilities.
Tools for the actual functional configuration
seem good for some of the industrial prod-
ucts. Overall, it seems that research is need-
ed more in the development of configuration
tools and accompanying analysis than in the
construction of the components themselves.

Regarding the infrastructure supporting
the connection of the components, many
systems are based on a kernel approach.
There is a kernel that is responsible for the
connection of the components. In this case,
the size and functionality of the kernel is vari-
able. Other systems use COM-based inter-
faces and Java Virtual Machine as a mean to
connect the components. In most systems,
the components are classified as user and
operating system components. Among the
systems that provide reconfiguration capa-

65MAY–JUNE 2001

bilities, a few provide it for operating system
components. Table 1 provides a summary of
the major issues being investigated in using
component-based software for operating sys-
tem and embedded applications.

Opportunities for research
While we are beginning to see many pro-

jects and products addressing the need for
component-based development for embed-
ded and real-time systems, key research ques-
tions still exist in three main areas:

• software components themselves,
• dynamically reconfigurable hardware

components, and
• the configuration process.

Software component research issues
include:

• developing lightweight interfaces,
• defining metrics and developing tech-

niques for categorizing components
along memory size, execution time, fault
tolerance, security, and quality-of-service
dimensions (nonfunctional attributes, for
example),

• developing and saving configuration
information about components, (for
instance, constraints such as component
A must be used with component B and C
and not with D, or only works on certain
hardware).

Dynamically reconfiguring hardware com-
ponents will become more prevalent with the
availability of new FPGAs. While this will
increase the flexibility and performance of
embedded systems, it gives rise to the follow-
ing research questions:

• What impact will the changed hardware
have on the operating system compo-
nents and on the application code for
both the functional and nonfunctional
attributes?

• How do you determine when the per-
formance gain of dynamic configuration
is worth the cost?

The configuration process is perhaps the
area that has received the least attention, but
it is critical. Some of the key research ques-
tions are:

• How do you guide the developer to
choose the right components to meet all
the requirements of space, time, cost,
power, and speed to market?

• Recognizing that analysis tools are criti-
cal, how do you analyze the resultant col-
lection of components for correctness,
for meeting deadlines, and meeting other
requirements? MICRO

References
1. H. Takada, “µITRON: A Standard Real-Time

Kernel Specification for Small-Scale

66

COMPONENT-BASED OSS

IEEE MICRO

Table 1. Summary of the systems.

Analysis Composition

System capabilities tools Infrastructure Reconfiguration capabilities

Choices OS View OS View OO-based framework Dynamic loading of OS classes
OS-Kit Profiling Not available COM-based framework Not supported
Coyote None Minimal x kernel Dynamic change of event handlers
PURE None Annotation language Minimal kernel OO based Not supported
2K None Not available Corba-based reflective ORB Dynamic loading of user components
JavaOS None Not available Java Virtual Machine Dynamic detection of drivers
Jbed None Jbed IDE Java Virtual Machine Downloading of user components
MMLite None Not available COM-based framework Replacement of OS components
Pebble None Not available Minimal kernel Dynamic loading of OS services
IcWORKSHOP Debugging IcBUILD Kernel based Not supported

and profiling
eCos Test cases to GUI generated Kernel based Not supported

verify validity header files

Embedded Systems,” Real-Time Magazine,
1997, q3.

2. G. Booch, Software Components with Ada:
Structures, Tools and Subsystems, Benjamin-
Cummings, Redwood City, Calif., 1987.

3. O. Nierstrasz et al., “Component-Oriented
Software Development,” Comm. the ACM,
vol. 35, no. 9, 1992, pp. 160-165.

4. R. Orfali et al., The Essential Distributed
Objects Survival Guide, John Wiley and
Sons, New York, 1996.

5. J. Samentiger, Software Engineering with
Reusable Components, Springer-Verlag,
Berlin, 1997.

6. K. Short, Component-Based Development
and Object Modeling, Sterling Software;
http://www.cool.sterling.com.

7. C. Szyperski, Component Software Beyond
Object-Oriented Programming, Addison-
Wesley, ACM Press, New York, 1998.

8. A. Beugnard et al., “Making Components
Contract Aware,” IEEE Computer, vol. 32,
no. 7, 1999, pp. 38-45.

9. Object Management Group, The Common
Object Request Broker: Architecture and
Specification, revision 2.0, 1997;
http://www.omg.org.

10. Microsoft Corporation and Digital Equipment
Corporation, The Component Object Model
Specification, Redmond, Wash., 1995.

11. Microsoft Corporation, Distributed
Component Object Model Protocol, version
1.0, Redmond, Wash., 1998.

12. Sun Microsystems, JavaBeans, version 1.0,
1996; http://java.sun.com/beans.

13. K. Arnold et al., The Jini Specification,
Addison-Wesley, Reading, Mass., 1999

14. B. Meyer and C. Mingins, “Component-Based
Development: From Buzz to Spark,” IEEE
Computer, vol. 32, no. 7, 1999, pp. 35-37.

15. D. Engler et al., “Exokernel: An Operating
System Architecture for Application-Level
Resource Management,” Proc. 15th Symp.
Operating Systems Principles (SOSP), ACM
Press, New York, 1995, pp. 251-266.

16. B. Bershad et al., SPIN: An Extensible
Microkernel for Application-Specific
Operating System Services, tech. report,
Univ. of Washington, 1994.

17. R. Campbell et al., “Designing and
Implementing Choices: An Object-Oriented
System in C++,” Comm. the ACM, vol. 36,
no. 9, Sept. 1993, pg. 117-126.

18. B. Ford et al., “The Flux OSKit: A Substrate for
Kernel and Language Research,” Proc. 16th
ACM Symp. Operating Systems Principles,
ACM Press, New York, 1997, pp. 38-51.

19. N. Bhatti et al., “Coyote: A System for Con-
structing Fine-Grain Configurable Communi-
cation Services,” ACM Trans. Computer
Systems, vol. 16, no. 4, 1998, pp. 321-366.

20. D. Beuche et al., “The PURE Family of
Object-Oriented Operating Systems for
Deeply Embedded Systems,” Proc. 2nd
IEEE Int’l Symp. Object-Oriented Real-Time
Distributed Computing, IEEE Press,
Piscataway, N.J., 1999.

21. F. Kon et al., “2K: A Reflective, Component-
Based Operating System for Rapidly
Changing Environments,” Lecture Notes in
Computer Science Series: Object-Oriented
Technology ECOOP [European Conference
on Object-Oriented Programming]
Workshop Reader, S. Demeyer and J.
Bosch, eds., Springer-Verlag, Heidelberg,
vol. 1543, 1998.

22. D. Hildebrand, “An Architectural Overview
of QNX,” Proc. USENIX Workshop on Micro-
kernels and Other Kernel Architectures,
USENIX: The Advanced Computing Systems
Assoc., 1992, pp. 113-126; http://www.
usenix.org/.

23. Wind River Systems, VxWorks
Programmer’s Guide, Alameda, Calif., 1995.

24. T. Saulpaugh and C. Mirho, Inside the
JavaOS Operating System, Addison Wesley,
Reading, Mass., 1999.

25. Oberon Microsystems, Jbed Whitepaper:
Component Software and Real-time
Computing, tech. report, 1998; http://www.
oberon.ch.

26. J. Helander and A. Forin, “MMLite: A Highly
Componentized System Architecture,” Proc.
8th ACM Special Interest Group on Operating
Systems European Workshop (SIGOPS),
ACM Press, New York, 1998, pp. 96-103.

27. E. Gabber et al., “The Pebble Component-
Based Operating System,” Proc. USENIX
Annual Technical Conference, USENIX
Assoc., 1999, pp. 267-282; http://www.
usenix.org/

28. Chipware, Integrated Chipware IcWorkShop,
1999; http://www.chipware.com/.

29. Cygnus, eCos: Embedded Cygnus Operat-
ing System, tech. white paper, 1999; http://
www.cygnus.com/ecos.

67MAY–JUNE 2001

L. Fernando Friedrich is a faculty member at
the department of computer science, Federal
University of Santa Catarina, Brazil. His
research interests are in operating systems, real-
time computing, and parallel and distributed
computing. Friedrich received his PhD in
engineering from the Federal University of
Santa Catarina. He is a member of the Brazil-
ian Computing Society (SBC) and the Soci-
ety for Computer Simulation International.

John Stankovic is the BP America Professor
and chair of the Computer Science Depart-
ment at the University of Virginia. His research
interests are in real-time and embedded sys-
tems focusing on operating systems and sched-
uling. Stankovic received his PhD from Brown
University. He is a fellow of the IEEE and the
ACM and serves on the board of directors for
the Computer Research Association.

Marty Humphrey is a research assistant pro-
fessor in the Computer Science Department
at the University of Virginia where he also
codirects the Legion project (for middleware
that creates a cluster of computers to work on
a single problem). His technical interests
include operating systems (embedded, real
time, wide area), real-time systems, wide area
and distributed systems, and computational

grids. Humphrey received his PhD from the
University of Massachusetts. He is a member
of the IEEE and the ACM.

Michael Marley is an embedded systems pro-
grammer with Lucent Technologies. His
research interests include embedded and real-
time systems. He received the BSEE and
MSEE from Southern Methodist University
and the MCS from the University of Virginia.
He is a member of the IEEE.

John Haskins Jr. is pursuing his doctorate at
the University of Virginia Department of
Computer Science where he earned his MCS
in 2000. He earned his BS in computer sci-
ence from Georgia Tech in 1997. Between the
conclusion of his undergraduate studies and
the beginning of graduate studies, he worked
as an adjunct research staff at the IDA Center
for Computing Sciences. His technical inter-
ests include computer architecture and oper-
ating systems.

Direct questions and comments about this
article to L. Fernando Friedrich, Federal
University of Santa Catarina, Department of
Computer Science, Florianópolis, SC, Brazil,
88070-900; fernando@inf.ufsc.br.

68

COMPONENT-BASED OSS

IEEE MICRO

A comprehensive, peer-reviewed

resource for the scientific

computing field.

A comprehensive, peer-reviewed

resource for the scientific

computing field.

Areas of expertise include

� Astronomy

� Chemistry

� Visualization

� Signal Processing

� Professional Resources

and
more…

COMPUTER.ORG/CISEPORTAL

