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Abstract
The increasing use of communication networks in
time critical applications presents engineers with
fundamental problems with the determination of
response times of communicating distributed
processes. Although there has been some work on the
analysis of communication protocols, most of this is
for idealised networks. Experience with single
processor scheduling analysis has shown that models
which abstract away from implementation details are
at best very pessimistic and at worst lead to
unschedulable system being deemed schedulable. In
this paper, we derive idealised scheduling analysis
for the CAN network, and then study two actual
interface chips to see how the analysis can be
applied.

1. Introduction
One of the fundamental difficulties in engineering hard

real-time systems is the development of analysis to bound
the timing behaviour of the system. Much work in recent
years has been developing this analysis for a run-time
dispatching algorithm known as fixed priority pre-
emptive scheduling. This work has recently addressed the
scheduling of messages on shared broadcast buses [6],
and in particular token-passing and ‘priority pre-emptive’
buses. The work makes certain assumptions about the
ideal behaviour of the interface between the host
processor and the communications adapter for these
buses. However, a given implementation may not meet
these assumptions, and so recent research has examined a
particular bus protocol and implementations from a
number of different manufacturers. This paper reports on
this analysis, and shows how small differences in the
implementation of an interface can have dramatic effects
on the worst-case timing performance of messages.

The real-time bus we examine in this paper is called
Controller Area Network (CAN) [1]. In particular we
examine in detail two interface chips: the 82527
controller from Intel, and the 82C200 controller from
Philips. We show how the Intel controller has a very

much better worst-case timing performance than the
Philips controller.

CAN is a broadcast bus designed to operate at speeds
of up to 1 Mbit/sec. Data is transmitted in messages
containing between 0 and 8 bytes of data. An 11 bit
number is associated with each message. The identifier is
required to be unique, in the sense that two
simultaneously active messages originating from different
sources must have distinct identifiers (typically, an
identifier corresponds to a particular type of message from
a specific source). The identifier serves two purposes: (1)
assigning a priority to the message, and (2) enabling
receivers to filter messages. A station filters messages by
only receiving messages with particular bit patterns
(typically using comparitors and mask registers). Thus
CAN messages have no explicit destination, since any
station with an appropriate filter may receive a message.

The use of the identifier as priority is the most
important part of CAN with respect to real-time
performance. Like Ethernet, CAN is a collision-detect
broadcast bus, but takes a much more systematic approach
to contention. The identifier field of a CAN message is
used to control access to the bus after collisions by taking
advantage of certain electrical characteristics of a CAN
bus: if multiple stations are transmitting concurrently and
one station transmits a ‘0’, then all stations monitoring
the bus will see a ‘0’. Conversely, only if all stations
transmit a ‘1’ will all processors monitoring the bus see a
‘1’. In effect, the CAN bus acts like a large AND-gate,
with each station able to see the output of the gate. This
behaviour is used to resolve collisions: each station waits
until bus idle (as with Ethernet). When silence is
detected, each station begins to transmit the highest
priority message held in its output queue whilst
monitoring the bus. The identifier is the first part of the
message to be transmitted; the identifier is transmitted
from most-significant to least-significant bit. If a station
transmits a recessive bit (‘1’), but monitors the bus and
sees a dominant bit (‘0’), then it stops transmitting since
it knows that the message it is transmitting is not the
highest priority message in the system. Because
identifiers are deemed unique within the system, a station
transmitting the last bit of the identifier without detecting
a collision must be transmitting the highest priority
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queued message, and hence can start transmitting the
body of the message.

The CAN message format contains 47 bits of protocol
control information (the identifier, CRC data,
acknowledgement and synchronisation bits, etc.). The
data transmission uses a bit stuffing protocol which
inserts a ‘stuff bit’ after five consecutive bits of the same
value.

Because the number of inserted stuff bits depends on
the bit pattern of a message, a given message type can
vary in size, e.g. a CAN message with 8 bytes of data
(and 47 control bits) is transmitted with between 0 and 19
stuff bits.

2. Communications model & notation

We define a message to be either a data message, or a
remote transmission request message. A message has a
size (between zero and eight bytes), and an identifier (as
described earlier). The set of all messages in the system is
denoted messages.

In a typical system, a message is queued by an
application task. We assume that each task is invoked
repeatedly (a task is said to have arrived when invoked by
some action). Each task has a minimum inter-arrival time
termed the period. Note that the period is a minimum
time between subsequent arrivals, rather than a strict
fixed interval. If the message queued by a given task is
potentially sent each time the task is invoked, then the
message inherits a period equal to the period of the task.
We denote as Tm the period of a given message m.

A given task i has a worst-case response time, denoted
Ri, which is defined as the longest time between the
arrival of a task and the time it completes some bounded
amount of computation. Existing analysis for single
processors is able to determine this worst-case response
time.

In general, the queuing of a message can occur with
jitter [2] (variability in queuing times). Correct analysis
requires that jitter be taken into account. Queuing jitter
can be defined as the difference between the earliest and
latest possible times a given message can be queued.

As with the period, the jitter of a given message m may
be inherited from the sender task. For an application task
i (with worst-case response time Ri) sending message m,
this queuing window is no more than Ri in duration (i.e.
the difference between the earliest and latest queuing
times of the message). The jitter of a given message m is
denoted Jm. In any realistic system all messages will have
some queuing jitter.

The worst-case response time of a given message m is
denoted Rm and defined as the longest time taken for the
message to reach the destination stations, measured
relative to the arrival time of the sender task.

The longest time taken to transmit a given message m
we denote as Cm. For an eight byte message (the largest

message permitted with CAN) transmitted on a 1
Mbit/sec network, C is 130 � s (64 bits for the data, 47 bits
of overhead — CRC and identifier fields, etc. — and up
to 19 stuff bits). Figure 1 illustrates the timing of a CAN
message.
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Figure 1: Timing model for CAN messages

3. Basic processor scheduling theory
Scheduling messages on a CAN bus is analogous to

scheduling tasks by fixed priorities. It is possible to take
existing analysis and apply it to CAN messages. We
therefore take a brief detour into scheduling theory for
fixed priority scheduling of tasks on a single processor.

Audsley et al [2] and Burns et al [3] show how the
analysis of Joseph and Pandya [4] can be updated to
include blocking factors introduced by periods of non-pre-
emption, release jitter, and accurately take account of a
task being non-pre-emptive for an interval before
termination. The following equations represent this
analysis:

R J w Ci i i i= + + (1)

where wi is given by:
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Where hp(i) is the set of tasks of higher priority than
task i, Ci is the worst-case computation time required by a
given task i, and Tj is the period of a given task j. Bi is the
blocking factor of task i (a bound on the time that a lower
priority task can execute and prevent the execution of task
i); the priority ceiling protocol [5] controls this ‘priority
inversion’ and defines how Bi can be computed. � res is the
resolution with which we measure time. On CAN bus we
deal with time units as multiples of the bit-time, which we
denote as � bit; with a 1 Mbit/sec bus this is equal to 1 � s.

Ji is the release jitter of task i, analogous to the
queuing jitter of a message. Note that if a task is invoked
by an incoming message, then the task inherits a release
jitter (and period) from the message (in just the same way
as a message inherits a queuing jitter from a sending
task); this is known as attribute inheritance, and leads to
an approach known as holistic scheduling (see [7] for a
full treatment).

The feasibility of a given task can be trivially assessed
by comparing the worst-case response time of the task
against its deadline. Note that the deadline of a given task
i, denoted Di is assumed to be less than or equal to Ti.
Another assumption is that a task cannot voluntarily



suspend itself (and hence the processor cannot be idle
when tasks have work to do).

Equation 2 describes a recurrence relation, where the
(n + 1)th approximation to the value of wi is found in
terms of the nth approximation, with the first
approximation set to zero. A solution is reached when the
(n + 1)th approximation equals the nth.

Having introduced this analysis we can apply it to
CAN bus scheduling. We do this by first deriving ideal
CAN analysis, and then discussing how the analysis is
affected by the behaviour of implemented hardware. We
discuss two implemented CAN controllers: the Intel
82257 and the Philips 82C200.

4. Analysis for ideal CAN

In this section we will derive scheduling analysis to
bound the worst-case response time of a given message.
The analysis of the previous section can be applied to
ideal CAN by the analogy between task scheduling and
message scheduling: a task is released at some time (i.e.
is placed in a priority-ordered queue of runnable tasks),
and contends with other tasks (both lower and higher
priority tasks) until it becomes the highest priority
runnable task.

Because of the operation of the priority ceiling
protocol, a task need only contend with at most one lower
priority task. In addition, it contends with all higher
priority tasks until these have all completed and the
processor is freed. With the model of Burns et al [3], the
task is then dispatched and runs until completion. Upon
completion it is returned to the waiting queue until next
made runnable.

The same behaviour holds for CAN messages: a
message is queued at some time, and contends with other
messages until it becomes the highest priority message. It
commences transmission, and is transmitted without
interruption until completion. Note that this assumes that
the bus cannot become idle between the transmission of
messages if there are pending messages (this is analogous
to the assumption that a task must not voluntarily suspend
itself). This assumption does not hold with the Philips
82C200 controller, and we examine the ramifications of
this in section 6.

The worst-case response time of a queued data
message, measured from the arrival of the queuing task to
the time the message is fully transmitted, is given from
the analogy (equation 1) by:

R J w Cm m m m= + + (3)

Jm is the queuing jitter of message m, inherited from
the worst-case response time Rsender(m) (where sender(m)
denotes the task queuing message m).

The term wm represents the worst-case queuing delay
— the longest time between placing the message in a

priority-ordered queue, and the message commencing
transmission. By analogy with equation 2:
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where the term Bm is the worst-case blocking time of
message m, and is analogous to the blocking factor
defined by the analysis of the priority ceiling protocol. Bm
is equal to the longest time taken to transmit a lower
priority message, and given by:
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lp(m) is the set of messages in the system of lower
priority than message m. If m is the lowest priority
message then Bm is zero (just as the lowest priority task
has a blocking factor of zero with the priority ceiling
protocol).

�

bit is the time taken to transmit a bit on the bus and
hp(m) is the set of messages in the system of higher
priority than message m.

Cm is the longest time taken to transmit message m. As
mentioned earlier, CAN has a 47 bit overhead per
message, and a stuff width of 5 bits. Only 34 of the 47 bits
of overhead are subject to stuffing, so Cm can be defined
by:
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where sm is the number of data bytes in the message.
Equation 4 above can be solved in the same way as
equation 2.

We next examine how the analysis copes with the
implementation details of different controllers, starting
with the Intel 82527.

5. Real-time behaviour of the 82527

The queuing of messages in the Intel 82527 is
undertaken in the controller and interfaced to the host
processor via dual-ported RAM. The intention is to map
permanently message identifiers to memory locations
(termed slots), so that both outgoing and desired
incoming messages are assigned unique slots.

A slot is tagged with a message identifier, and marked
as an incoming or outgoing slot. If a message is received
with the same identifier as a slot marked as incoming
then the message contents are stored in that slot (the slot
also contains an interrupt enable flag so that an interrupt
can be raised when the message arrives). If the host
processor wishes to initiate the transmission of the
message then it is able to mark the message as ready for
transmission.



Because of hardware limitations, only 15 slots are
available for outgoing and incoming messages (instead of
the ideal 2032 — the full range of CAN identifiers).
However, these 15 slots can be programmed to map to any
CAN identifier. The controller will transmit messages in
order of slot number, rather than the message identifier,
and therefore it is important that the messages are
allocated to the slots in identifier order. It should be noted
that in most envisaged automotive systems, 15 messages
per station is sufficient [8].

There is also a dedicated double-buffered receive
buffer: when a message has been received in the
controller without errors, a “message received” interrupt
may be raised on the host processor. If the identifier of the
message does not match the identifier in one of the slots
in the controller then the interrupt handler must copy the
contents of the message from the buffer and store it in
main memory. The handler then issues a “removed
message” signal to the controller, indicating that the
receive buffer is free. This is needed because the receive
buffer is double buffered: while the host processor is
removing data from one buffer, the controller may be
placing data in the other buffer. The controller needs to
synchronise with the host processor in order to place data
in a free buffer.

There is an implicit deadline on handling the “message
received” interrupt: if the host processor fails to remove
the data and signal “removed message” before the
controller has received the subsequent message then any
further incoming messages may be lost (the smallest time
between two successive messages is 47 �

bit).
In many ways the dual-ported memory approach is an

elegant way of implementing a controller, but one
drawback is that there is an implicit restriction on
message deadlines: a message cannot be queued if the
previous queuing of the same message has not yet been
transmitted. Therefore, we must have Dm 

�
 Tm (an

assumption also made by the scheduling analysis in this
paper).

Apart from the limitations discussed, the Intel 82527
controller behaves as an ideal CAN controller with
respect to the analysis derived in this paper.

6. Real-Time behaviour of the 82C200

In this section we discuss the behaviour of the Philips
82C200 CAN controller, and show its worst-case real-
time properties are poor (space limitations preclude the
development of analysis for this controller).

The Philips controller is a simple controller, with two
message buffers on-chip: a single 10 byte transmission
buffer, and a 10 byte double-buffered receive buffer. The
controller is typically interfaced to the processor as a
memory mapped I/O device, and can raise two interrupts:
“message received”, and “message sent”. The controller
accepts three signals from the host processor: “send

message”, “abort message”, and “removed message”. The
controller requires messages to be held on the host
processor, and software drivers to copy the messages from
the processor to the controller when appropriate.

To send a message, the host processor fills the transmit
buffer with up to eight bytes of data, the identifier of the
message, and some control bits, and then sends a
“transmit message” signal to the controller. We denote
the longest time to do this as �

copy. The controller
attempts to transmit the message according to the CAN
protocol; when the message has been sent, a “message
sent” interrupt is raised on the host processor.

The reception of messages is very similar to the Intel
82527 controller: when a message has been received in
the controller without errors a “message received”
interrupt is raised on the host processor and the interrupt
handler must copy the 10 bytes of message data from the
controller and store it in main memory.

The signal “abort message” is to aid in the writing of
software device drivers for pre-emptive queuing. Without
the signal, the real-time performance of the controller
would be very poor indeed. Consider the situation where
there is a low priority message in the transmit buffer of
the controller, and a high priority message has just been
queued by the host processor software. If the host
processor were unable to remove the low priority
message, then the high priority message would blocked
until the low priority message is sent. The low priority
message will only be sent when all other higher priority
traffic on the bus has finished; this could be very long‡.

Instead of succumbing to this problem, the device
driver should abort the transmission of the low priority
message, and copy the high priority message to the
transmit buffer. The controller will only abort the
message if it has not yet begun transmission. This is a
sensible approach, since if the low priority message has
begun transmission then there will be only a short delay
(equal to the transmission time of the message) before the
transmission buffer is freed.

There remains a major problem with the management
of the transmission buffer: the time between “message
sent” and the host processor copying the next message to
the transmit buffer is non-zero (although short if the host
processor is fast). In this short interval the bus could be
claimed by a low priority message from another station
and defer the transmission of the newly copied message.
This problem also occurs when a message is pre-empted:
the short interval between a lower priority message being
aborted, and the higher priority message being copied into
the buffer, releases the bus to low priority traffic.

For every pre-emption (i.e. when a message is aborted,
and replaced by a higher priority message) in an interval,

_______________________________________________
‡The software drivers supplied by Motorola for the 82C200 appear to
exhibit this priority inversion problem.



the bus may potentially be claimed twice by lower priority
traffic at other stations: once when the higher priority
message pre-empts, and once when the message has been
transmitted.

To illustrate this, consider the following scenario: a
message M is to be sent from a given station. Also sent
from this station are a high priority message H and a low
priority message L1. Other stations also have low priority
traffic to send (messages L2, L3, and L4). In this scenario,
message M can be delayed four times by lower priority
messages whilst being pre-empted just once. This is solely
a result of the buffer management mechanism.

The first delay occurs when message M is queued: as
mentioned earlier, the 82C200 controller is not able to
abort a message if the message has begun transmission.
Therefore message M can be delayed by L1. After the
message has been sent, the host processor copies message
M to the transmission buffer (taking at most �

copy). In this
time the bus is released and may become idle, or may be
claimed by lower priority messages from other stations.
When message M has been copied to the buffer, and is
ready for transmission, it may be delayed by a lower
priority message that has just started transmission from
another station (L2). Just before message M starts
transmitting, a higher priority message H can pre-empt
M: the 82C200 controller aborts message M, and copies
the higher priority message to the transmission buffer.
Again, the bus is released, and again lower priority
message can be transmitted (L3), delaying both message
H and message M. When message H has been transmitted
the host processor copies message M back to the
transmission buffer. Again, the bus is released, and again
message M can be delayed (by L4).

It is straightforward to bound the delays due to this
priority inversion, and the delays due to copying
messages. This priority inversion can be very large, and
lead to very poor worst-case performance of the
controller. The following table details a set of messages
based on the above scenario. They conform to the ‘rate
monotonic’ model of deadlines equal to periods.

Message T D C utiln

H 605 605 47 7.8%
M 610 610 47 7.8%
L1 100000 100000 130 0.13%
L2 100000 100000 130 0.13%
L3 100000 100000 130 0.13%
L4 100000 100000 130 0.13%

In the above table, all times are in microseconds.
Messages are assumed to be queued with zero jitter.

A small value for �
copy is assumed: large enough to

release the bus to lower priority messages when copying a
message to the transmission buffer, but not large enough
to form a significant part of the response time of a

message (in practice, such a small value would be
unattainable).

The example message set is unschedulable: in the
scenario described, we find that the response time of
message M is 614 � s. The bus utilisation in this example
is just under 16%. By comparison, the worst-case
response time of M with the Intel controller is 224 � s. It
is possible to find unschedulable scenarios with bus
utilisations as low as 11%. Clearly using the Philips
controller could lead to very poor resource utilisation.

Note that in the situation where there is a large amount
of low priority ‘soft’ real-time traffic on the bus, the
impact of higher priority traffic on lower priority traffic
sent from the same station is at least trebled when
compared to the ideal CAN behaviour (and when
compared to the behaviour of the Intel 82527), and that
worst-case response times will therefore be very much
larger.

7. Conclusions

This paper has derived scheduling analysis for the
CAN communication protocol. In particular, it has
bounded message response times for ideal behaviour. It
has shown that this ideal model can be inadequate, and
that it is necessary to consider the actual behaviour of the
controller technology. Two controllers have been
considered: the Intel 82527 and the Philips 82C200. The
Intel controller performs ideally, whereas the Philips
controller potentially leads to a large amount of priority
inversion (and hence requires the ideal analysis to be
updated). This paper has considered only message
delivery, but another aspect of real-time communication is
the processing overheads incurred when sending and
receiving message. Analysis bounding such overheads can
be developed (see Tindell et al [6] for a full discussion).
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