
MAKING JAVA HARD REAL-TIME

Peter Puschner

Institut für Technische Informatik
Technische Universität Wien

A-1040 Wien, Austria
Email: peter@vmars.tuwien.ac.at

Guillem Bernat and Andy Wellings

Department of Computer Science
University of York

York, YO10 5DD, United Kingdom
Email: fbernat,andyg@cs.york.ac.uk

ABSTRACT

Due to its portability and security the Java program-
ming language has become very popular. Standard Java is
however not suited for programming hard real-time sys-
tems. To overcome this limitation we developed a hard
real-time Java profile. This profile enhances standard Java
with two important properties: temporal predictability and
the portability of timing information. The paper intro-
duces the profile and explains the steps of the portable
worst-case timing analysis for the language.

1. INTRODUCTION

Only recently the Java programming language [7] has be-
come very popular. This popularity is mainly due to the
portability and security of the language. Nowadays, peo-
ple do not only want to write Web and interface programs
in Java, but also want to use the language in other applica-
tion areas. One of these areas is real-time programming.

Real-time systems are characterized by the importance
of time. Programs must not only be functionally correct,
but must also deliver results in time. The consequence of
missing a deadline depends on the type of application: In
soft real-time systems the incorrect timing may impair ser-
vice quality and cause annoyance (e.g., frames of a video
transmission are not displayed in time). In hard real-time
systems, in contrast, a single timing failure may lead to
significant financial losses or even a catastrophy. Exam-
ples of hard real-time systems are the control systems for
(nuclear) powerplants and fly/drive-by-wire applications.

This paper describes our endeavour to make Java,
a non-real-time programming language, suitable for
programming hard real-time systems. By doing so
we make the strong features of Java – its security and
its portability in the functional domain – available to
real-time programming. Further, making this well-known
language suitable for real-time programming will help
to reduce training costs for real-time programming.
Real-time programmers shall no longer have to learn the
peculiarities of exotic real-time languages from scratch
but shall be able to build on their knowledge of Java.

Making Java suitable for real-time programming is con-
cerned with two essential properties: temporal predictabil-
ity and portability of timing information. To achieve tem-

The presented work was performed while the first author was on a
research stay at the University of York. This stay was supported by the
Marie-Curie Fellowship, contract no. HPMF-CT-1999-00184.

poral predictability one needs to restrict the programming
language (including its native classes) and to adapt the
virtual machine. Extending the portability of Java from
the functional domain into the time domain requires to
enhance Java class files with portable information about
code execution times and to develop concepts for portable
worst-case execution-time (WCET) analysis.

In this paper we describe a Java language profile for
hard real-time systems. We characterize the restrictions
and modifications of the programming language and dis-
cuss the necessary adaptions of the execution model of the
virtual machine. Further we present a two-step WCET-
analysis method that allows Java frameworks to include
portable WCET information into Java class files.

Section 2 introduces the hard real-time Java profile and
describes mechanisms of the virtual machine that supports
the implementation of the profile. Section 3 gives an in-
troduction to WCET analysis and Section 4 presents the
two-step WCET analysis that supports the portability of
timing information. Section 5 provides a summary.

2. THE HARD REAL-TIME JAVA PROFILE

The idea of making Java suitable for real-time applications
is not new. In fact, at least two specifications of real-time
dialects for Java exist today, [3, 8]. These dialects achieve
real-time capabiliy by adding real-time features on top of
standard Java. Naturally, these languages are very com-
plex and include many features that are not suited for hard
real-time applications.

In contrast to the mentioned approaches the profile pre-
sented here has been tailored for hard real-time systems,
which need temporal predictability. The profile is based
on the Real-Time Specification for Java (RTSJ) [3]. It
does however restrict the threading model, thread interac-
tion, and memory management to a very simple and tem-
porally predictable subset of the RTSJ [12].

2.1. The Basic Model

As mentioned above, the construction of hard real-time
systems requires that both the functional and the tempo-
ral behavior of applications are analyzable. This require-
ment restricts the concurrency of applications and thus in-
fluences the semantics that the profile has to provide. We
have adopted the following real-time concurrency model
that has been proposed in [4]:

� The number of threads, i.e., software activities that
coexist and execute concurrently on the computer
system, is fixed.

� Each thread has a single invocation event, but has a
potentially unbounded number of invocations. There
are two trigger types for activities, clocks and sig-
nals, the latter coming from the environment or other
threads. Threads that are invoked by a clock are
called time-triggered threads. Threads invoked by
other signals are called event-triggered threads.

� Threads only interact via the use of shared data. Up-
dates to the shared data must be atomic.

Given these assumptions and the knowledge of the
scheduling model (e.g., fixed priority scheduling, time-
triggered scheduling), the correctness of the behavior of
an application can be analyzed (again, see [4]):

� The functional behavior of each thread is verified
using techniques appropriate for sequential code.
In this analysis, shared data is viewed as data input
from or output to the environment. Timing analysis
ensures that shared data is appropriately initialized.
Worst-case execution time analysis computes bounds
for the computation time of sequential code pieces
of the threads.

� Given the threads have been assigned their temporal
attributes (e.g., computation time, period, deadline)
the system-wide timing behavior can be verified us-
ing standard techniques, e.g., fixed priority analysis
[9, 5] or off-line scheduling [6].

2.2. Language-Model Restrictions

Java and the RTSJ comprise a number of threading fea-
tures and mechanisms for inter-process communication
with which higher-level abstractions can be constructed
[15]. While these features make the language very pow-
erful and provide valuable programming aids to the de-
veloper, they need to be supported by a complex run-time
system and make timing analysis very ineffective, if not
impossible. These features have thus been omitted from
the profile. The following sections introduce the profile.
Further details can be found in [12].

2.2.1. Threads

In order to support the temporal requirements of hard
real-time applications, the threading model has to
be predictable in its functional behaviour, has to be
analyzable with respect to its timing, and ideally has low
overhead. We achieve this by the following mechanisms.

Initialization and mission phase. All applications are
structured into two phases, an initialization (startup)
phase and a mission phase. During startup an application
performs non time-critical initializations to prepare for
the real-time operation. It creates and initializes threads,
event handlers, events, and memory objects and sets the
timing and scheduling parameters (see below). Once
all initializations have been completed the application

switches to the mission phase. During the mission phase
it performs the time-critical operations of the system.

All operations of the initialization phase are coded
in main. Interference between main (i.e., the startup
code) and the time-critical threads of the mission phase is
avoided by running main as an environment thread at the
highest thread priority. This way no thread can actually
start before main has completed. The completion of the
last statement of main and of all class initializations (see
Section 2.3) marks the end of the initialization. This point
also marks the starting point of the mission phase.

Thread generation in main. All threads are created and
started during startup. This avoids the thread-creation
overhead during the mission phase, makes the application
timing predictable, and simplifies timing analysis.

Static thread priorities. In order to make timing analysis
possible, the execution priorities assigned to threads re-
main unchanged during their entire life time (except when
threads execute synchronized methods, [12]).

Periodic time-triggered activities. Periodic activities
are realized as non-terminating threads which consist
of initialization code and an infinite loop (main loop).
After the initialization the threads enter the loop and
never exit again until the system is shut down. Every
path through the main loop has at least one call of
the waitForNextPeriod method that delays the
execution of the thread until the start of its next period.

Periodic real-time activities are implemented using the
class NoHeapRealtimeThread of the RTSJ. The pro-
file defines NoHeapRealtimeThread and its super-
class RealtimeThread as follows:
public abstract class RealtimeThread extends

java.lang.Thread implements Schedulable
{

protected RealtimeThread(
SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
ProcessingGroupParameters group,
java.lang.Runnable logic)
throws IllegalArgumentException;

public void start();
public void waitForNextPeriod();

public static RealtimeThread
currentRealtimeThread()

throws ClassCastException;

// other methods including:
// getMemoryArea, getSchedulingParameters,
// getMemoryParameters, getReleaseParameters

}

public class NoHeapRealtimeThread
extends RealtimeThread

{
public NoHeapRealtimeThread(

SchedulingParameters scheduling,
PeriodicParameters periodic,
MemoryParameters memory, MemoryArea area,
ProcessingGroupParameters group,
java.lang.Runnable logic)
throws IllegalArgumentException;

}

In the profile RealtimeThread is an abstract class.

It cannot be instantiated. All periodic real-time threads
have to be implemented as instances of NoHeapReal-
timeThread and do not allocate objects from the heap.
This avoids garbage collection, which in turn improves
temporal predictability.

The class NoHeapRealtimeThread provides
only one constructor. This constructor enforces that
the programmer defines all parameters required for the
proper analysis and realization of periodic real-time
threads. Further, the RealtimeThread class of the
profile defines only a subset of the methods of the RTSJ
RealtimeThread class. The set...-methods of the
RTSJ that allow threads to change their own and other
threads’ timing or scheduling characteristics during the
time-critical mission are not supported.

Sporadic, event-triggered activities. Non-periodic, spo-
radic activities are realized as event handlers. In the ini-
tialization phase these event handlers are linked to their
triggering events. Once set up, the bindings between han-
dlers and events remain unchanged. During the mission
phase, each occurrence of an event triggers one execution
of its handler.

No dynamic class loading or initialization during mission
phase. Standard Java allows applications to locate and
load classes dynamically. The profile, in contrast, requires
that all classes are known before system start and that all
classes are completely loaded and initialized during the
initialization phase. Knowing all classes is mandatory in
order to make sure all code is available for WCET analysis
before the application is started. Loading and initializing
all code during startup is necessary to obtain the temporal
predictability of the code.

2.2.2. Concurrency

In a typical real-time application, threads communicate
and share data with each other. Also, synchronization con-
straints exist between the actions performed by different
threads. The profile provides mechanisms for access to
shared data structures and for thread synchronization. The
set of mechanisms is very restrictive to make the imple-
mentation of the run-time environment simple and avoid
high run-time overheads.

Synchronized methods. Synchronized methods provide
mutual exclusion to shared resources. Priority ceiling em-
ulation adjusts thread priorities to avoid deadlocks.

No wait, notify, or notifyAll. Due to this restric-
tion, no queues are required. This avoids complex queue
management at runtime and avoids difficulties in the anal-
ysis of the order and timing of operations.

2.2.3. Memory Management and Raw Memory Access

The profile supports a very simple and restricted memory
management. This is to facilitate an accurate pre-runtime
analysis of the run-time behavior of the memory manager.

No garbage collection (GC). The temporal behavior of tra-
ditional garbage collectors for Java is unpredictable [14].
This is due to the fact that the points in time when the
GC is run and the duration of each activation of the GC

depend on the dynamic behavior of both the running Java
programs and the virtual machine.

Specific real-time garbage collectors are more
predictable [3, 8]. They are activated periodically and
provide a guaranteed garbage-collection rate. These GCs
in general manipulate complex data structures and the
analysis of their characteristics is non-trivial.

Due to the difficulty to predict memory availability and
the timing of garbage collectors, the profile does not sup-
port GC. The profile does, however, support two other
types of memory, Immortal Memory and Scoped Memory
as defined by the RTSJ.

Immortal memory. Objects allocated in immortal mem-
ory cannot be de-allocated or moved. They live until the
system is shut down. The access time to the immortal
memory must be known and the time needed for object
allocation must be linear in the size of the object.

To avoid that the system runs out of memory, object
creation in immortal memory is only allowed during the
initialization phase.

Linear-time scoped memory. This memory area has a lim-
ited life time – the memory area is valid as long as one
or more threads have access, i.e., a reference to it. When
the last accessing thread removes its reference, finalizers
for all objects in the memory area are run and the area is
emptied.

The time for the allocation of an object from linear-time
scoped memory must be linear in the size of the allocated
object. The timing parameters of the memory must be
known. The profile imposes restrictions on the allocation
of objects in order to avoid a permanent growth of memory
needs [12]. In addition, it restricts the use of references to
and from scoped memory areas in order to maintain the
safety of Java and prohibit dangling references, see [3].

Object allocation to specific memory areas and raw-
memory access. The allocation scheme can be used to
locate selected threads to fast memory in order to meet
their timing constraint. Raw memory access allows
programs to implement device drivers, memory-mapped
I/O, etc.

2.2.4. Time and Clock

Real-time clock and representation of time. The profile
includes class clock to represent real time and classes
for storing and manipulating absolute points in time and
durations. These classes are fundamental for hard real-
time systems.

2.3. Implementation Issues

2.3.1. WCET Analyzability

To guarantee the temporal predictability of a complete
processing system, an upper bound for the WCET of each
thread instance (i.e., code executing between two calls
of waitForNextPeriod for periodic threads and the
code of event handlers) must be computable. This requires
that all (Java and native) methods of the profile are coded
such that their execution times can be bounded. The fol-
lowing are minimal requirements for WCET analyzability.

� Recursion must be bounded and loops must have a
finite number of iterations. The bound for the maxi-
mum number of repetitions of every loop and recur-
sion must be computable at compile time. Comput-
ing these bounds can be supported by the WCETAn
class, as introduced in [2]. Using the WCETAn class
is useful if control paths depend on input data and
deriving loop bounds automatically is difficult.

� Code that executes during the mission phase must not
load new classes (see Section 2.2.1).

2.3.2. Virtual-Machine Support

The profile has to be supported by the target virtual ma-
chine and its environment. Otherwise real-time response
and temporal predictabily are not achievable.

� The virtual machine must be able to manage the
transition from the initialization phase to the mission
phase and to handle the different requirements for
these phases.

� The virtual machine and class loaders must load,
link, and initialize all classes of an application
during the initialization phase. Errors detected
during these operations have to be reported before
the initialization completes. This behavior is not
in accordance with the Java virtual machine spec-
ification [10]. In hard real-time systems, however,
error detection before the start of the mission phase
is absolutely crucial. Unreported errors that occur
during the mission phase might have catastrophic
consequences.

� The virtual machine must provide a real-time sched-
uler to determine the order of thread execution that is
necessary to meet all timing constraints.

� The virtual machine has to implement mutual exclu-
sion during execution of synchronized methods.

� The virtual machine must provide a real-time clock
and check the correct timing of events and thread ex-
ecution (execution time, deadline).

� The execution times of all operations of the virtual
machine itself have to be boundable.

2.3.3. Tool Support for the Profile

The profile relies on a number of tools to ascertain the
correct operation of an application. In fact, wherever pos-
sible the enforcement of the profile shall be checked be-
fore runtime. Again, although this does not conform to
the traditional Java philosophy, it is crucial for hard real-
time applications. The tool framework needs to include
checks for the rules of the profile with respect to thread
creation, memory allocation, and class loading, etc. It has
to provide software for schedulability analysis or schedul-
ing, and it has to include a tool for WCET analysis.

Within the following section we will focus on the
WCET analysis tool for the profile. While existing
WCET tools are customized to one specific hardware

target the WCET tool for our Java profile supports the
portability of WCET information to different platforms.
It thus provides the necessary extension of the portability
of Java from the functional domain into the time domain.

3. WCET ANALYSIS

Before we describe the portable WCET analysis for our
profile we give a short introduction to WCET analysis. In-
formally, WCET analysis is defined as follows:

WCET analysis computes upper bounds for
the execution times of pieces of code for a given
application, where the execution time of a piece
of code is defined as the time it takes the proces-
sor to execute that piece of code.

Note the following points about this informal definition
of WCET analysis that are worth mentioning:

� WCET analysis computes upper bounds for the
WCET, not necessarily the exact WCET.

� The WCET bound computed for a piece of code
is application-dependent. As the execution paths
through the code may differ between different
applications, the same piece of code may have
different WCETs and thus WCET bounds.

� WCET analysis is hardware-dependent.

� Although the above definition does not mention the
quality of the results of WCET analysis, WCET anal-
ysis is usually required to deliver bounds that are
close to exact WCET values.

Current approaches to WCET analysis are complex and
focus on specific hardware, see [11]. They are not portable
and do not support a simple WCET computation from an
intermediate execution-time representation.

The portable WCET analysis of the Java profile is based
on the timing-schema approach [13]. The timing-schema
approach uses execution-time calculation rules for differ-
ent constructs (simple, if-then-else, loop, etc.) and con-
struct sequences. It applies these rules recursively, follow-
ing the syntactic structure of the code to compute WCET
bounds, see Table 1.

Table 1: Simple Timing Schema

S tmax(S)
simple WCET of S
S1; S2; tmax(S1) + tmax(S2)
if (E) S1 tmax(E) +max(tmax(S1); tmax(S2))

else S2;
while (E) S; (N + 1)� tmax(E) +N � tmax(S)

While the pure timing-schema approach is easy to use
it has a severe problem. It cannot process information
about the execution characteristics of a program that spans
across the borders of nested constructs. For example, for

the code listed in Figure 1 the timing schema approach in-
cludes the WCET bound of line 5 N times within the inner
loop and N 2 times in the whole program fragment shown.
Obviously this yields a pessimistic WCET bound. The
timing schema does not allow the user to express the num-
ber of executions of line 5 relative to the outer loop (i.e.,
across the borders of the inner loop) which would yield a
WCET bound that accounts only N(N + 1)=2 times for
line 5.

1 for (i=1; i<=N; i++) loop count: N
2 {
3 for (j=1; j<=i; j++) loop bound: N
4 {
5 /* calc. */ executions in outer loop: (N+1)N

2
6 }
7 }

Figure 1: Piece of Code and Path Information

A way out of the above-mentioned problem is to add
path information (i.e., information that characterizes
execution paths across construct boundaries) to program
code and use more complex methods for WCET analysis.
While this works fine for a WCET analysis in which the
path information and execution times of program parts
are fully defined and for which the complexity of the
WCET analysis is of minor concern, it is not suited for
a WCET analysis of portable code. The latter analysis
has to be kept simple, because one cannot expect that the
means for a complex analysis are available at the location
where the final WCET computation takes place.

4. WCET ANALYSIS FOR PORTABLE CODE

WCET Analysis for portable code differs from traditional
WCET analysis in that not all necessary parameters for
the analysis (e.g., the timing of instructions on the target
hardware) are available at the software developer’s site.
Therefore the software developer cannot provide a con-
crete WCET bound with the delivered code. Instead, the
developer provides an abstract representation of the exe-
cution time that can be easily evaluated when the miss-
ing parameters are known. The entire WCET analysis is
therefore split into two parts, see Figure 2.

Developer’s
Platform

Target
Platform

WCET
Analysis

Portable
Analysis

Concrete
Analysis

Java with path information

JBC + reusable, portable WCET

JBC + reusable, portable WCET

Distribution

JBC + WCET bound

VM Timing
Model

Figure 2: Two-Step WCET Analysis

The first step of the analysis is done at the developer’s
place. The software developer writes the code to be
ported, annotates it with path information, translates

it into a distribution format, and generates the abstract
representation of the WCET of the code. The latter step
is called abstract WCET analysis.

Together with the distributable code the abstract WCET
information is delivered to the end users (either a human,
e.g., a programmer who uses the code, or a computer sys-
tem). The end user instantiates the abstract WCET in-
formation with the missing parameters and computes the
final, concrete WCET bound. This step is called concrete
WCET analysis. As mentioned before, the resources at the
end user’s site may be very limited and complex analysis
tools may not available. The analysis must therefore allow
for the concrete analysis to be simple.

4.1. Portability

It has been mentioned that portability makes it impossible
that the software developer performs the complete WCET
analysis. In the following we explain the effects of porta-
bility on WCET analysis in more detail.

Portable code is ported to and executed on different
hardware platforms. For portable code the timing param-
eters (e.g., processor speed) of the target hardware are not
exactly known to the software developer. Therefore, the
duration of the actions the software performs is unknown.
The WCET analysis of the software developer can there-
fore only provide abstract durations of actions (instruc-
tions) of the code. Again, the end user has to instantiate
these abstract information to obtain concrete execution-
time bounds.

While portability restricts the information about the ex-
ecution time that can be represented, the static control
structure of the code is not affected. The control struc-
ture of the code is, of course, a determining factor for the
WCET of the code. Portable WCET information therefore
consists of

� information about the static control structure of the
code and

� abstract execution-time information for the action-
s/instructions of the code. As the abstract analysis
does not have information about the timing of the tar-
get hardware, abstract timing information represents
knowledge about the number of occurrences (execu-
tion frequencies) of certain facts instead of calculated
times (see below).

4.2. Abstract WCET Analysis

The abstract-analysis tool generates the portable
execution-time information. It first reads the portable
code and generates a tree data structure that represents the
control structure and the abstract timing of the operations
of the analyzed program. The tool then traverses the
tree structure and generates the abstract execution-time
formula: All parts of the tree except scopes are translated
into timing-schema expressions (e.g., an if-then-else
yields an expression c1 +max(c2; c3), where c1, c2, and
c3 are representations of the abstract execution times of
the condition, then and else branches, respectively).

4.2.1. Abstract Instruction-Execution Times

The choice of the format for the abstract instruction-
timing information is up to the designer of the class files
and virtual machine. Depending on the quality demanded
from the WCET analysis one can choose between a
very simple and more sophisticated formats. In a simple
format the portable execution-time representation for
a piece of Java byte codes may be a vector that stores
how often each of the byte codes occurs in the code. A
more elaborate format may not just represent the number
of occurrences of all byte codes but may also count the
number of specific byte-code combinations, see [1].

4.3. Concrete WCET Analysis

The concrete WCET analysis instantiates the abstract val-
ues of the portable WCET information with concrete val-
ues and computes the WCET bound. This requires that
the concrete analysis provides concrete values for the ab-
stract information characterizing the timing of the basic
operations on the target.

Once the concrete information is available the concrete
analysis is simple. It replaces all abstract values in the
WCET representation by the concrete values and evalu-
ates the resulting formulas to obtain the concrete WCET
bound. These formulas are built from the following, very
simple operators: assignment, (,), +,�, �,min, andmax.

5. SUMMARY AND CONCLUSION

The paper presented a real-time profile for Java that fulfils
the needs of hard real-time applications. The profile
restricts the real-time specification for Java to a subset
which supports temporal predictability and the portability
of worst-case execution-time information. To achieve
temporal predictability the profile enforces restrictions on
thread creation, thread interaction, memory management,
class loading, and programming. The portability of
WCET information is realized by a two-step WCET
analysis. The first step of the analysis is performed
by the software developer and generates an abstract
execution-time representation that is distributed in Java
class files together with the Java code. The second step of
the analysis takes place in the user’s environment or even
on the target. This step instantiates the abstract timing
information with the parameters of the target environment
to obtain the final WCET value. To support the portability
of timing information even to very simple targets the
complexity is put into the first step of the analysis and the
second step uses only very basic operations.

6. REFERENCES

[1] I. Bate, G. Bernat, G. Murphy, and P. Puschner.
Low-Level Analysis of a Portable Java Byte Code
WCET Analysis Framework. In Proceedings of the
7th International Conference on Real-Time Comput-
ing Systems and Applications, pages 39–46, Cheju
Island, South Korea, Dec. 2000.

[2] G. Bernat, A. Burns, and A. Wellings. Portable
Worst-Case Execution Time Analysis Using Java
Byte Code. In Proceedings of the 12th Euromicro In-
ternational Conference on Real-Time Systems, pages
81–88, Stockholm, Sweden, June 2000.

[3] G. Bollela, B. Brosgol, P. Dibble, S. Furr, J. Gosling,
D. Hardin, and M. Turnbull. The Real-Time Specifi-
cation for Java. Addison Wesley, 2000.

[4] A. Burns, B. Dobbing, and G. Romanski. The
Ravenscar Tasking Profile for High Integrity Real-
Time Programs. In L. Asplund, editor, Proceedings
of Ada-Europe 98, Lecture Notes in Computer Sci-
ence, Volume 1411, pages 263–275, Berlin Heidel-
berg, Germany, 1998. Springer-Verlag.

[5] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages. Addison Wesley, third
edition, 2001.

[6] G. Fohler. Flexibility in Statically Scheduled Real-
Time Systems. PhD thesis, Technische Universität
Wien, Wien, Austria, 1994.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
Java Language Specification. Addison Wesley, sec-
ond edition, 2000.

[8] J Consortium Inc. International J Consortium
Specification; Real-Time Core Extensions, 2000.
http://www.j-consortium.org.

[9] M. Klein, T. Ralya, B. Pollak, R. Obenza, and
M. Gonzalez Harbour. A Practitioner’s Handbook
for Real-Time Analysis: A Guide to Rate Monotonic
Analysis for Real-Time Systems. Kluwer Academic
Publishers, 1993.

[10] T. Lindholm and F. Yellin. The Java Virtual Ma-
chine Specification. Addison Wesley, second edition,
1999.

[11] P. Puschner and A. Burns. A Review of Worst-Case
Execution-Time Analysis (Guest Editorial). Real-
Time Systems, 18(2/3):115–127, May 2000.

[12] P. Puschner and A. Wellings. A Profile for High-
Integrity Real-Time Java Programs. In Proceedings
of the 4th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pages
15–22, Magdeburg, Germany, May 2001.

[13] A. C. Shaw. Reasoning about time in higher-level
language software. IEEE Transactions on Software
Engineering, SE-15(7):875–889, July 1989.

[14] B. Venners. Inside the Java Virtual Machine.
McGraw-Hill, second edition, 1999.

[15] A. Wellings and P. Puschner. Evaluating the Expres-
sive Power of the Real-Time Specification for Java.
Real-Time Systems, to appear.

