
Time-Utility Function-Driven Switched Ethernet:
Packet Scheduling Algorithm, Implementation,

and Feasibility Analysis
Jinggang Wang and Binoy Ravindran, Member, IEEE

Abstract—We present a MAC-layer, soft real-time packet scheduling algorithm called UPA. UPA considers a message model where

message packets have end-to-end timeliness requirements that are specified using Jensen’s Time-Utility Functions (TUFs). The

algorithm seeks to maximize system-wide, aggregate packet utility. Since this scheduling problem is NP-hard, UPA heuristically

computes schedules with a quadratic worst-case cost, faster than the previously best CMA algorithm. Our simulation studies show that

UPA performs the same as or significantly better than CMA for a broad set of TUFs. Furthermore, we implement UPA and prototype a

TUF-driven switched Ethernet system. The performance measurements of UPA from the implementation reveal its strong

effectiveness. Finally, we derive timeliness feasibility conditions of TUF-driven switched Ethernet systems that use the UPA algorithm.

Index Terms—Local-area networks, Ethernet, process control systems, real-time and embedded systems.

�

1 INTRODUCTION

ALTHOUGH the IEEE 802.3 Ethernet standard is unsuited
for real-time applications due to the randomness in

Ethernet’s CSMA/CD protocol, the Ethernet is still attrac-
tive for real-time applications due to its wide availability,
low cost, and high performance such as that offered by the
emerging 10 Gigabit Ethernet standard. This has motivated
research on the real-time Ethernet.

The most widely studied timing constraint in real-time

Ethernet research is the deadline. Examples include shared

real-time Ethernet efforts such as TDMA [1], token-passing

techniques [2], [3], Virtual Time Protocols [4], [5], [6],

Window Protocols [7], traffic smoothing techniques [8], the

CSMA/DDCR protocol [9] and [10], switched real-time

Ethernet efforts such as EtheReal [11], SIXNET [12], [13],

and [14], and real-time packet-switching efforts [15].
A deadline timing constraint for an application activity

essentially implies that completing the activity before the

deadline accrues some “utility” to the system and that

utility remains the same if the activity were to complete any

time before the deadline. Furthermore, completing the

activity after the deadline yields less utility. With deadline

timing constraints, one can specify the hard timeliness

optimality criterion of satisfying all deadlines and use hard

real-time scheduling algorithms [16] to achieve the criterion.
In this paper, we focus on supervisory real-time control

systems that are emerging and can be found in defense,

industrial automation, and telecommunication domains.

Supervisory real-time systems control large, physical
systems that are composed of several low-level control
systems. Moreover, many timing constraints in such
systems are “soft” in the sense that completing an activity
at any time will result in some utility to the system and that
utility varies with activity completion time. Furthermore,
supervisory systems often desire a soft timeliness optim-
ality criterion, such as completing as many soft time-
constrained activities as possible at their optimal completion
times.

Another distinguishing feature of supervisory systems is
that they are subject to significant runtime uncertainties that
are inherent in their application environment. Conse-
quently, upper bounds on timing variables in such systems
including duration of computational and communication
steps are not known to exist at design time with sufficient
accuracy. Thus, the hard timeliness optimality criterion of
satisfying all timing constraints is difficult to achieve for
supervisory real-time systems.

Jensen’s time-utility functions [17] allow the semantics of
soft timing constraints to be precisely specified. A Time-
Utility Function (or TUF) specifies the utility to the system
for completing an application activity as an application or
situation-specific function of activity completion time [17].
Fig. 1 shows example TUFs.

Moreover, TUF predicates allow specification of soft
timeliness optimality criteria. For example, the objective of
completing as many activities as possible at their optimal
times can be described as maximizing summed utility

obtained by activity completions.
In this paper, we present a TUF-driven switched

Ethernet network system for supervisory real-time control.
We consider a timeliness model where application message
packets have end-to-end timeliness requirements that are
specified using TUFs. Furthermore, we consider a single-
segment switched Ethernet network as the underlying

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004 1

. J. Wang is with Embedded System Division, Casabyte, Inc.,2801 Prosper-
ity Dr., PO Box 10127, Blacksburg, VA 24062. E-mail: gwang@embed-
ded.casabyte.com.

. B. Ravindran is with the Real-Time Systems Laboratory, The Bradley
Department of Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA 24061. E-mail: binoy@vt.edu.

Manuscript received 30 Apr. 2003; revised 4 Aug. 2003; accepted 8 Aug.
2003.
For information on obtaining reprints of this article, please send e-mail to:

1045-9219/04/$17.00 � 2004 IEEE Published by the IEEE Computer Society

system model. Given such models, our objective is to

maximize system-wide, aggregate packet utility.
Toward this objective, we design a packet scheduling

algorithm called the Utility Accrual Packet Scheduling

Algorithm (or UPA). The UPA schedules outgoing message

packets from source hosts and switches to maximize

aggregate packet utility. The packet scheduling problem

solved by the UPA is equivalent to the scheduling problem

shown to be NP-hard in [18]. In [18], Chen and Muhlethaler

present a heuristic algorithm for this problem with a worst-

case cost of Oðn3Þ. For convenience, we call this the Chen

and Muhlethaler’s Algorithm (or CMA).
Though the UPA heuristically solves the same problem

as that of CMA, it only incurs a worst-case cost of Oðn2Þ.
Furthermore, our simulation studies show that the UPA

performs the same as or significantly better than the CMA

for a broad set of TUFs. We also implement the UPA and

prototype a TUF-driven switched Ethernet network system

using a PC-based platform. Our actual performance

measurements from the implementation and experimental

comparisons further reveal the strong effectiveness of the

algorithm.
Finally, we conduct schedulability analysis and derive

timeliness feasibility conditions of switched Ethernet net-

work systems that use the UPA. The feasibility conditions

facilitate the design of TUF-driven switched Ethernet

systems with guaranteed soft timeliness properties.
Thus, the contribution of the paper includes: 1) the UPA

algorithm that seeks to maximize system-wide, aggregate

packet utility, 2) construction of a TUF-driven switched

Ethernet using the UPA, and 3) timeliness feasibility

conditions for constructing switched Ethernets with guar-

anteed soft timeliness. To the best of our knowledge, we are

not aware of any other efforts that solve the problem solved

by the UPA (besides the CMA, which the UPA is shown to

outperform here).
The rest of the paper is organized as follows: In Section 2,

we discuss example supervisory real-time applications to

provide the motivating context. We discuss the models of

the work in Section 3. In Section 4, we describe the

scheduling problem and the objectives. We describe UPA

in Section 5. In Sections 6 and 7, we evaluate UPA’s

performance through simulation studies. We discuss UPA’s

implementation in Section 8. Section 9 discusses the

implementation test bench and Section 10 describes the

measurements. We derive UPA’s timeliness feasibility

conditions in Section 11. The paper concludes in Section 12.

2 MOTIVATING APPLICATION EXAMPLES

As example supervisory real-time systems, we describe two
applications 1) an AWACS (Airborne WArning and Control
System) surveillance mode tracker system [19] that was
built by The MITRE Corporation and 2) a coastal air defense
system [20] that was built by General Dynamics (GD) and
Carnegie Mellon University (CMU). Here, we only sum-
marize some of the application timing constraints that are
described using TUFs; all other application details can be
found in [19], [20], respectively.

The AWACS is an airborne radar system with many
missions, including air surveillance. Surveillance missions
generate aircraft tracks for command and control. The
tracker’s most demanding computation, called association,
associates sensor reports to aircraft tracks. A large number
of sensor reports can overload the system, causing sectors of
sky to “go blank.” The tracker employs two sensors that
sweep 180 degrees out of phase with a 10 second period.
Thus, association has a “critical time” at the 10 second
period. If the computation can process a sensor report for a
track in under five seconds (half the sweep period), it will
provide better data for the corresponding report from the
out-of-phase sensor. Thus, prior to critical time, associa-
tion’s utility decreases as critical time nears.

After the critical time, the utility of association is zero,
because newer sensor data has probably arrived. Thus, if
the processing load in one sensor sweep period is so heavy
that it cannot be completed, probably the load will be about
the same in the next period. Thus, there will not be any
resources to also process sensor data from the previous
sweep.

These semantics establish association’s TUF shape: a
critical time tc at sweep period, utility that decreases from a
value U1 to a value U2 until tc, and a utility value U3 after tc.
U1, U2, and U3 are determined using metrics such as: 1) track
quality, which is a measure of the amount of sensor data
incorporated in a track record; 2) track accuracy, which is a
measure of the uncertainty in the estimate of a track’s
position and velocity; and 3) track importance, which is
measure of track attributes such as threat. Fig. 2 shows
association’s TUF.

Timing constraints of two activities in the GD/CMU
coastal air defense system, called plot correlation and database
maintenance, have similar semantics. Correlation is respon-
sible for correlating plot reports that arrive from sensor
systems against a tracking database. Maintenance periodi-
cally scans the tracking database, purging old and
uncorrelated reports so that stale information does not
cause tracking errors.

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

Fig. 1. Soft timing constraints specified using Jensen’s time-utility functions: (a) step, (b) soft-step, (c) parabolic, (d) multimodal.

Both activities have “critical times” that correspond to

radar frame arrival rate: It is best if both are completed

before next data frame’s arrival. However, it is acceptable

for them to be late by one additional time frame under

overloads. Furthermore, plot correlation has a greater utility

during overloads. TUFs in Fig. 3 reflect these semantics.

3 THE MODELS

3.1 The Message and Timeliness Models

We consider application message packets that arrive at host

MAC-layers for outbound transmission to destination hosts

as our message model. The set of packets is denoted

pi 2 P; i 2 ½1; n�. Each packet has an end-to-end timing

requirement that is specified using a TUF. We denote

packet pi’s TUF as Ui :ð Þ. Thus, pi’s arrival at its destination

host MAC-layer at a time t will yield an utility Ui tð Þ. Fig. 1
shows example TUFs.

Though TUFs can take arbitrary shapes, here we focus on

unimodal TUFs that are nonincreasing. Unimodal TUFs are

those that have a single optimal completion time interval.

Figs. 1a, 1b, and 1c show examples. TUFs that have multiple

optimal completion time intervals are called multimodal

TUFs. Fig. 1d shows an example.
Nonincreasing unimodal TUFs are those unimodal TUFs

for which utility never increases as time advances. Figs. 1a

and 1b show examples. The class of such TUFs allows

specifying a broad range of timing constraints; hence, we

focus on them.
We define a packet pi’s initial time, denoted as Ii, as the

earliest time for which the packet TUF is defined and

deadline time, denoted as Di, as the time at which the TUF

drops to zero utility. Further, we assume that UiðtÞ > 0; 8t 2
Ii;Di½ � and UiðtÞ ¼ 0; 8t =2 Ii;Di½ �; i 2 ½1; n�.

3.2 The System Model

We consider a single-segment switched Ethernet network,
where hosts are interconnected through a centralized
switch as our target platform (see Fig. 4). Each host is
connected to the switch using a full-duplex Ethernet
segment (IEEE 802.3) and to a port at the switch that is
dedicated for the host. Thus, the link between each host
and the switch is a dedicated link for simultaneous two-
way communication between the host and the switch. We
denote the set of hosts that generate the packet set P as
si 2 S; i 2 ½1; z�.

In single-segment switched Ethernets, packets arrive at
the MAC-layer of source hosts where they are generated.
Upon arrival, they are queued in the outgoing packet queue
of the host. When the network segment from the host to the
switch becomes “free” for transmission, the packet schedul-
ing algorithm at the host schedules a packet from the queue
for transmission.

The switch maintains a list of packet ready-queues, one
queue per host. Each queue stores packets that are destined
for a host. When packets arrive at the switch, they are
queued in the outgoing packet queue for their destination
host. When the network segment from the switch to a host
becomes free for transmission, the packet scheduling
algorithm at the switch schedules a packet from the queue
of destination host for transmission.

The bit length of a packet pi 2 P at the data link layer is
denoted as bðpiÞ. The physical framing overheads increase
this size into an actual bit length b0ðpiÞ > bðpiÞ for transmis-
sion. Thus, the transmission latency of a packet pi is given
by li ¼ b0ðpiÞ= , where denotes the nominal throughput of
the underlying network medium (e.g., 109 bits/s for Gigabit
Ethernet).

We assume that the clocks of hosts and the switch are
synchronized using a protocol such as [21]. (We discuss the
motivation for clock synchronization in Section 5.)

4 PROBLEM DEFINITION AND OBJECTIVES

Given the models in Section 3, our objective is to maximize
the aggregate utility accrued by the arrival of all packets at
their destinations, i.e., Maximize

Pn
k¼1 UkðtkÞ, where tk is

the time at which packet pk arrives at the MAC-layer of its
destination host.

In a single-segment switched network, a packet will
experience contention for two network resources once it
arrives at its source MAC-layer. The resources include 1) the
network segment from source to switch and 2) the network

WANG AND RAVINDRAN: TIME-UTILITY FUNCTION-DRIVEN SWITCHED ETHERNET: PACKET SCHEDULING ALGORITHM,... 3

Fig. 2. Track association TUF in MITRE AWACS.

Fig. 3. TUFs of two activities in GD/CMU air defense. (a) Correlation and (b) maintenance.

segment from switch to destination. The contention
between packets for the two resources can be resolved in

different ways to achieve the objective.
The contention can be locally resolved by independently

constructing packet schedules for the two network seg-
ments such that the aggregate utility accrued on each

segment is maximized. Thus, in this approach, MAC-layer

packet scheduling algorithms at source hosts and switch
will construct local schedules for their respective outgoing

network segments such that aggregate utility accrued by
the packets on respective segments are maximized. By

doing so, the approach seeks to maximize system-wide,

aggregate accrued utility. The approach thus only seeks to
approximate global optimality through independent node

scheduling.
The contention can also be globally resolved by simulta-

neously constructing packet schedules for all network
segments in a manner that will directly maximize system-

wide, aggregate accrued utility. Thus, in this approach, node

instances of a logically single scheduling algorithm will
execute at MAC-layers of source hosts and switch, interact

with each other, and schedule all network segments such

that system-wide, aggregate accrued utility is maximized.
The approach thus seeks to achieve global optimality.

We consider the local approach in this paper for its

simplicity. Our rationale is that the overhead involved in

communication and interaction between schedulers for
global scheduling may offset its optimality advantage. For

example, the time-scales of host/switch MAC-layer sche-
duling and interhost/switch scheduler communication can

differ by orders of magnitude.
We now formalize the objective of (local) packet

scheduling at hosts/switch as follows: Let A � P denote
the set of packets in the outgoing packet queue at a host/

switch at a time t. Let � � n denote the number of packets

in set A. Let SðAÞ denote all possible sequences of packets
of set A, and let � 2 SðAÞ denote one of the possible

packet sequence of the packets in A. Let �ðiÞ denote the

packet occupying the ith position in the schedule �. Then,
the scheduling objective is to Maximize�2 SðAÞ Uð�Þ ¼P�

k¼1 U�ðkÞðtþ tkÞ, where tk ¼
Pk

i¼1 l�ðiÞ.

This packet scheduling problem is equivalent to the
nonpreemptive task scheduling problem addressed in [18].
In [18], Chen and Muhlethaler show that their task
scheduling problem isNP-hard. Further, in [18], they present
a heuristic algorithm (referred to as CMA here) to solve this
problem, which incurs a worst-case cost of Oðn3Þ. Further-
more, through simulation studies, they show that CMA
yields an aggregate utility that is generally close to optimal.

We believe that CMA’s Oðn3Þ cost is too large for an
online packet scheduling algorithm. Furthermore, CMA’s
storage cost is also large, making it practically infeasible for
host/switch MAC-layer scheduling. (We discuss this issue
in Section 10.1). Thus, in designing UPA, our objective is to
compute schedules that 1) are faster than CMA’s Oðn3Þ
time, 2) require storage that is appropriate for MAC-layer
host/switch scheduling, and 3) produce aggregate utility
that is as close as possible to that of the CMA, if not better.

5 THE UPA ALGORITHM: HEURISTICS AND

RATIONALE

5.1 Sort Packets in Decreasing Order of Their
“Return of Investments”

The potential utility that can be obtained by spending a unit
amount of network transmission time for a packet defines a
measure of the “return of investment” for the packet. Thus,
by ordering packets in the schedule in the decreasing order
of their return of investments, we “greedily” collect as
many “high return” packets into the schedule as early as
possible. Furthermore, since a packet included in the
schedule at any instant in time is always the one with the
next “highest-return” packet among the set of nonexamined
packets, we increase our chance of collecting as many “high
return” packets into the schedule as early as possible. This
will increase the likelihood of maximizing the aggregate
packet utility as packets yield greater utility if they arrive
earlier at their destinations since we only consider
nonincreasing unimodal TUFs.

The return of investment for a packet can be determined
by computing the slope of the packet TUF. However,
computing slopes of arbitrary unimodal TUFs can be
computationally expensive. Thus, we determine the return
of investment for a packet as simply the ratio of the
maximum possible packet utility (specified by the packet
TUF) to the packet deadline. This is just a single division,
costing Oð1Þ time. We call this ratio the “pseudoslope” of a
packet. The slope is “pseudo” as it only gives an
approximate measure of the slope. However, the pseudo-
slope is an attractive metric since it can be computed with
low overhead.

5.2 Move Infeasible Packets to Schedule-End

Infeasible packets are packets that cannot arrive at their
destinations before their deadlines, no matter what. This is
because the remaining transmission time of such packets is
longer than the time interval between their arrival at a host
or the switch and the packet deadlines. Packets that are not
infeasible are feasible packets.

By moving infeasible packets to schedule-end, we move
as many feasible packets to schedule-beginning as possible.
This will increase the likelihood of maximizing aggregate

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

Fig. 4. The switched Ethernet system model.

packet utility as feasible packets yield greater utility if they

arrive earlier at their destinations since we only consider

nonincreasing unimodal TUFs. Furthermore, infeasible

packets yield zero utility if they arrive at their destinations

after their deadlines. Thus, there is no reason for transmit-

ting them early and jeopardizing the potential utility that

can be accrued from feasible packets.
To determine whether a packet is infeasible, the

algorithm therefore needs global time. Thus, as discussed

previously, we assume that the host and switch clocks are

synchronized.

5.3 Maximize Local Aggregate Utility As Much
As Possible

We derive the concept of local aggregate utility from the

precedence-relation property in [18]: Consider two schedules,

�a ¼ h�1; pi; pj; �2i and �b ¼ h�1; pj; pi; �2i of a packet set A,

such that �1 6¼ 0, �2 6¼ 0, �1
S
�2 ¼ A� fpi; pjg, and �1

T
�2

¼ ;. Consider a time instant t ¼
P

k2�1 lk, when a scheduling

decision has to be made, i.e., t is the time instant after all

packets in schedule �1 has been transmitted. Now, the

scheduling decision at time t can be made by computing

�i;jðtÞ ¼ Ui tþ lið Þ þ Uj tþ li þ lj
� �� �

� Uj tþ lj
� �

þ Ui tþ lj þ li
� �� �

:

Thus, if �i;jðtÞ � 0, then �a will yield a higher aggregate

utility than �b; otherwise, �b is better than �a.
Now, by examining adjacent packets pi and pj in a

schedule h�1; pi; pj; �2i and ensuring that �i;jðtÞ � 0, we can

maximize the local aggregate utility of packets pi and pj. If

all adjacent packets in the schedule have such locally

maximized aggregate utility, this will increase the like-

lihood of maximizing the global aggregate utility.
The maximization of the local aggregate utility can be

done in a manner similar to that of Bubble sort. We can

examine adjacent pairs of packets in the schedule, compute

�, and swap the packets, if the reverse order can lead to

higher local aggregate utility. Furthermore, the procedure

can be repeated until no swaps are required.
Pseudocode of the UPA at a high-level of abstraction is

shown in Fig. 5.

5.4 Computational Complexity of the UPA

The UPA’s cost depends upon Step 5’s cost. Step 5’s cost is

dominated by that of Step 5.2; all other substeps of Step 5

take Oð1Þ time. Step 5.2 iterates a maximum of � times and,

thus, costs Oð�Þ. Step 5 iterates a maximum of � times and,

thus, costs Oð�2Þ. Given n packets, UPA’s cost is thus O n2ð Þ,
which is faster than CMA’s O n3ð Þ cost [18].

WANG AND RAVINDRAN: TIME-UTILITY FUNCTION-DRIVEN SWITCHED ETHERNET: PACKET SCHEDULING ALGORITHM,... 5

Fig. 5. High-level pseudocode of the UPA algorithm.

6 SIMULATION STUDY 1: SINGLE QUEUE

ENVIRONMENT

To study how the UPA compares with the optimal
algorithm, we consider a single packet queue environment,
where packets queue-up in a single queue for outbound
transmission. We consider such a single queue environment
because that allows us to significantly reduce the problem
size, thereby facilitating the UPA’s comparison with the
optimal algorithm. The optimal algorithm determines
optimal schedules through exhaustive search.

6.1 Experiment Setup

To study the UPA’s performance in a large data space, we
randomly generate all message parameters using probabil-
ity distribution functions. We determine message transmis-
sion time and deadline from an exponential distribution
and maximum utility value from a normal distribution.

6.2 Time-Utility Functions

We consider six TUFs in our study. These include the step
and soft-step TUFs shown in Fig. 1 and linear, exponential,
quadratic, and composite TUFs shown in Fig. 6. Our
motivation to consider these six TUFs is that they are close
variants of the MITRE AWACS tracker and GD/CMU air
defense system TUFs. In fact, in the design of the AWACS
TUF, the designers empirically derived the slope of the TUF
[19]. Therefore, we consider TUFs that are similar to the
AWACS TUF, but with different slopes.

Moreover, the AWACS TUF had to linearly decrease due
to an implementation artifact—the scheduling algorithm of
the OS (OSF/RI’s MK7.3A) allowed only a single critical

time. Thus, we consider TUFs that are similar to the
AWACS TUF, but that allow multiple critical times such as
soft-step and quadratic TUFs (Figs. 1b and 6c, respectively).

We believe that the soft-step and quadratic TUFs nicely
“fit” the semantics of AWACS’s track association computa-
tion. This is because both the TUFs allow two “critical”
times: 1) constant utility up to a critical time tc, after which
the utility decreases (with different slopes); and 2) a
deadline time Di, after which the utility is zero.

The time tc could very well map to half the sweep period
of the two sensors, i.e., five seconds, and the time Di could
map to the sweep period length of 10 seconds. This will
allow the association computation to gain a constant
maximum utility for processing a sensor report for a track
any time before half the sweep period (tc), thereby providing
better data for the corresponding report from the out-of-
phase sensor. Further, after half the sweep period, the
utility of the computation will decrease as the sweep period
length (Di) nears. Furthermore, the computation will gain
zero utility after the sweep period.

6.3 Normalized Average Performance

Table 1 shows the average (and standard deviation) of the
normalized aggregate utility produced by the UPA and
CMA for the six TUFs for two traffic sets. We compute the
normalized aggregate utility of an algorithm as the ratio of
the aggregate utility of the algorithm to that of the optimal
algorithm. Fig. 7a shows the average values for one of the
traffic sets (the 9-message set).

From Table 1 and Fig. 7a, we observe that the UPA’s
performance is very close (� 93 percent) to that of the

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

Fig. 6. Four TUFs considered in experimental study: (a) linear, (b) exponential, (c) quadratic, (d) composite.

TABLE 1
The UPA and CMA’s Optimal-Normalized Utility

optimal algorithm for all six TUFs. Further, we observe that
the CMA performs close to that of the optimal algorithm for
some TUFs, such as quadratic, linear, and exponential, but
performs poorly for TUFs such as step and soft-step.
Furthermore, the UPA performs close to the CMA for
linear, exponential, quadratic, and composite TUFs. How-
ever, the UPA outperforms the CMA for step and soft-step
TUFs for both the traffic sets.

To determine how the UPA’s and CMA’s performances
are distributed over the range of experiments conducted for
a given TUF, we plot different percentages of the normal-
ized aggregate utility of the algorithms in terms of the
percentage of experiments. Fig. 7b shows the distribution of
the algorithms’ optimal-normalized aggregate utility for
step TUF. From the figure, we observe that more than
55 percent of the UPA’s aggregate utility are exactly the
same as the optimal value. Furthermore, no results are
found to be less than 70 percent of optimal value.

7 SIMULATION STUDY 2: SWITCHED NETWORKED

ENVIRONMENT

7.1 Experiment Setup

To study the UPA’s performance in a large data space, we
randomly generate all message parameters using probabil-
ity distribution functions. We consider a switched network
of five hosts, where each host has five processes that
generate trans-node messages. We determine the message
destination address from a uniform distribution, message
length and deadline from an exponential distribution, and
maximum utility value and interarrival time from a normal
distribution.

Besides the UPA and CMA, we consider the EDF [16] and
First-In-First-Out (FIFO) algorithms. We exclude the
optimal algorithm for this study as it is found to be
computationally intractable for the networked environment.
We also consider the six TUFs discussed in Section 6.2.

7.2 Normalized Average Performance

Fig. 8 shows the average of the normalized aggregate utility
produced by the UPA, CMA, and EDF for all experiments
that were conducted for the algorithms, for each of the six
TUFs. For this study, we determine the normalized
aggregate utility of an algorithm as the ratio of the

aggregate utility of the algorithm to that of FIFO. In
Table 2, we show the maximum, minimum, and the
standard deviation of the normalized aggregate utilities,
besides the average.

From Fig. 8 and Table 2, we observe that the UPA
performs the best and the EDF performs the worst, for all
six TUFs. The CMA performs in between that of the UPA
and EDF. Further, the UPA maintains an average normal-
ized aggregate utility of 2:5. Furthermore, the UPA’s and
CMA’s performance is just about the same for linear,
exponential, and composite TUFs. However, the UPA
significantly outperforms the CMA for step, soft-step, and
quadratic TUFs.

From Table 2, we also observe that EDF performs worse
than FIFO in many cases (the minimum value of the EDF’s
normalized aggregate utility is less than one), although its
average performance is always better. This is because the
EDF works well for step TUFs that have same maximum
utilities (EDF’s optimality [22] is true for such a case), which
is not the case here. When the maximum utility of step TUFs
differs, the EDF performs worse.

7.3 Performance under Increasing Arrival Density

We were also interested to determine how the UPA and
CMA perform when the arrival density of packets increases.
The arrival density of a packet is the number of times the
packet arrives during a time interval. Thus, a larger arrival
density implies larger traffic. Our interest in this metric is
due to the dynamic nature of supervisory systems that we
focus, which are frequently subject to runtime increases in
message traffic.

WANG AND RAVINDRAN: TIME-UTILITY FUNCTION-DRIVEN SWITCHED ETHERNET: PACKET SCHEDULING ALGORITHM,... 7

Fig. 7. UPA and CMA’s performance with respect to optimal algorithm. (a) Optimal-normalized utility. (b) Utility distribution.

Fig. 8. FIFO-normalized utility of the UPA, CMA, and EDF.

We repeated the experiments described in Section 7.2 for
16 message arrival densities that are progressively increas-

ing. The results are shown in Fig. 9 for quadratic TUFs.
In Fig. 9a, we normalize the aggregate utility of the

algorithms with respect to FIFO. From the figure, we

observe that the UPA performs the best, the EDF the worst,
and the CMA in between. Fig. 9b shows the deadline-miss

ratio of the UPA, CMA, EDF, and FIFO. Again, we observe
that the UPA has the smallest miss ratio, followed by the

CMA and EDF. We observed similar consistent results for
all other TUFs. So, these are not shown.

8 THE UPA IMPLEMENTATION

Our goal in implementing the UPA is simply to prototype a
TUF-driven switched Ethernet network in a laboratory

setting, conduct experiments using the implementation (by
comparing the UPA with other algorithms), and, thus,

measure the UPA’s actual performance.
Since our goal is only to prototype a network for

experimentation and instrumentation (as opposed to actual
deployment/application usage), we prototype the switch

using a PC. We use a Pentium PC with a 450 MHz processor

and 256MB of memory as the central switch. In the switch,

we use two ZX346Q 4-port Ethernet adapters from ZNYX

[23] for packet switching. The ZX346Q uses PCI bus to

communicate with the PC.
Since the computational demand on hosts is small—

capability to send/receive packets—we use a single PC to

emulate several hosts that send messages. We use another

4-port Ethernet adapter in a Pentium PC to emulate four

hosts. For the receiving host, we use a Pentium PC. Thus, in

the prototype setup, there are a total of four sending “hosts”

and one receiving host.
The four sending ports connect to the switch with

100Mbps full duplex links and the switch connects to the

receiving host with a 10Mbps half-duplex link. In our

experiments, we assume that real-time messages unidir-

ectionally flow from the four sending “hosts” to the

receiving host. Since, in real-time packet transmission,

2-way hand shaking mode is not used, the unidirectional

real-time message flow and 10Mbps half-duplex link do not

affect our performance studies. We use a 10Mbps link as the

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

TABLE 2
Performance of the UPA, CMA, and EDF with Respect to FIFO

Fig. 9. Performance under increasing arrival density and quadratic TUFs. (a) Normalized aggregate utility. (b) Deadline miss ratio.

receiving link so that sufficiently large packet traffic can be

generated on the switch output port.
To synchronize the PC clocks, we use the xntpd [24]

implementation of the NTP protocol [21]. To accurately

synchronize time, we use a dedicated 100Mbps link in all

three PCs to connect to the time server in our laboratory

through another 3COM hardware-level Ethernet switch.

The lab time server is synchronized with an external time

server.
We implement UPA at the MAC layer—between the IP

and the Ethernet device driver layers—in the Linux kernel

for packet scheduling (at hosts and switch). We believe that

this is the best location to implement the algorithm because

of the accuracy with which scheduling results can be

obtained. In the switch, we use Böhme and Buytenhak’s

Linux Bridge program [25] to conduct packet switching.

Fig. 10 shows the prototype system.

9 TEST BENCH SETUP

9.1 Experimental Parameters

For measuring the UPA’s performance from the implemen-

tation, we generate traffic using the same distributions as

those used in our simulation studies. In these experiments,

we exclude exponential and composite TUFs. This is

because it is computationally expensive to evaluate an

exponential TUF in the kernel as it requires math-emulation.

Furthermore, composite TUFs are least similar to our

motivating TUFs—AWACS and air defense system TUFs.

9.2 Emulating Four Hosts with a Single PC

In our prototype, four sending “hosts” are emulated by four

Ethernet ports. In order to send messages through a specific

port, we configure each Ethernet port with a different IP

address. More importantly, all four IP addresses belong to

four different network addresses so that the routing table

can be built by the Linux kernel exactly as we desire.

However, on the receiver side, it has only one IP address.

Therefore, we set three IP alias addresses for the receiver so

that the receiver can be accepted by four different network

address domains. The IP address configuration details can

be found in [26].

9.3 Algorithms for Comparative Evaluation

We implemented six algorithms for a comparative study.

The algorithms include the UPA, CMA, FIFO, EDF with No

Deadline Miss Check (or EDF_NDMC), and EDF with

Deadline Miss Check (or EDF_DMC). Our rationale for

considering EDF_DMC and EDF_NDMC is because of the

UPA’s feasibility test (Steps 5.2.2 and 5.2.3, Fig. 5). Thus, a

comparison of the UPA and EDF_DMC will help us

evaluate the impact of the UPA’s scheduling scheme

toward the UPA’s performance since both the UPA and

EDF_DMC employ the feasibility test. On the other hand, a

comparison of EDF_DMC and EDF_NDMC will help us

evaluate the impact of the feasibility test itself since

EDF_DMC employs the test and EDF_NDMC does not.

9.4 Packet-Level TUFs from Message-Level TUFs

The UPA schedules packets using packet TUFs. However, if
a message size is larger than what can be accommodated in
a packet, the message will be fragmented into several
packets. In such instances, it is reasonable for all packets of
the message to inherit the message TUF. To evaluate the
effectiveness of this strategy and, thus, the relationship
between packet-level and message-level scheduling, we
study two cases: 1) “big” message sizes and 2) “small”
message sizes. With big message sizes, message fragmenta-
tion into packets occurs, whereas, with small message sizes,
fragmentation rarely occurs.

9.5 Impact of Maximum Utility Value

To evaluate the impact of maximum utility values on the
performance of the algorithms, we consider a deterministic
assignment of maximum utilities, besides a probabilistic
assignment using distribution functions. For example, if an
algorithm shows an advantage over others even when the
ratio of maximum utility to minimum utility is small, it
indicates that the algorithm is quite efficient because it can
distinguish a small difference.

Thus, we consider two utility assignments called, UAL

and UAH . In UAL, we repeatedly assign the maximum
utility values 1, 5, 15, 17, 20, 23, 25, 280, and 1,000 to the
messages. In UAH , we repeatedly assign the maximum
utility values 1, 5, 15, 17, 20, 23, 25, 28, and 8,000. Thus, the
ratio of maximum utility value to minimum utility value of
UAL is 1,000, while that of UAH is 8,000. Furthermore, the
average of the difference between successive maximum
utility values of UAL is smaller than that of UAH .

10 PERFORMANCE MEASUREMENT AND ANALYSIS

10.1 Infeasibility of the CMA

From our implementation measurements, we observed that
the CMA is not practical as a packet scheduling algorithm
due to its large storage cost. The CMA uses a precedence
matrix to store real-time attributes of each packet [18]. Thus,
if the queue size is 4K and each packet requires 14 bytes to
store real-time attributes, the total demand for memory
would be 4K� 4K� 14 ¼ 224Mbytes. This will exhaust the
entire host/switch address space.

For the UPA, we only need a one-dimensional array to
store packet real-time attributes, requiring only 56K of

WANG AND RAVINDRAN: TIME-UTILITY FUNCTION-DRIVEN SWITCHED ETHERNET: PACKET SCHEDULING ALGORITHM,... 9

Fig. 10. Prototype TUF-driven switched Ethernet.

memory for auxiliary storage. For the EDF algorithms, there

is no need for similar storage. Thus, only the UPA, the EDF

algorithms, and FIFO are practical.

10.2 Performance Comparison by Message Size and
Maximum Utility Value

In order to evaluate the algorithm performance, we

conducted experiments for all four TUFs under all five

traffic conditions. Tables 3, 4, 5, and 6 illustrate the results.

From the tables, we observe that, in each traffic type, the
UPA always achieves the largest accrued utility, except in
some cases of soft-step TUFs where EDF_DMC performs
slightly better than the UPA. We believe that such
exceptional cases are due to the difference between the
pseudoslope approximated by the UPA and the actual slope
of soft-step TUFs considered in the experiments.

With different TUFs, we observe that the advantage of
the UPA is not that obvious for step TUFs. However, it is

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

TABLE 3
T0: Big Message Size and Normal Distribution Utility

TABLE 4
T1: Small Message Size and Normal Distribution Utility

TABLE 5
T2: Small Message Size and UAL Maximum Utility

TABLE 6
T3: Small Message Size and UAH Maximum Utility

quite obvious for the other three TUFs where the UPA
achieves accrued utilities that are 6 to 38 times as that
achieved by FIFO.

From Tables 3, 4, 5, and 6, we also observe that the UPA
has the minimum deadline-miss ratio among all four
algorithms. The difference between the UPA and other
algorithms for the deadline-miss ratio metric is quite
significant.

Thus, from the results, we observe that the UPA
performs very well, even in a software-switching platform.
We believe that this is due to the UPA’s average-case cost,
which is far less than the worst-case cost of Oðn2Þ. Recall
that the UPA’s most dominating step is the inner for-loop,
which can iterate a maximum of n times (see Fig. 5). The
outer for-loop also iterates for n times. However, it turns
out that the pseudoslope order that the UPA determines
prior to the nested for-loop is very close to the final order.
Thus, the exact number of iterations performed during the
inner for-loop is far less than n. This significantly reduces
the UPA’s average-case cost. Such results were frequently
observed during our simulation studies.

From Tables 3 and 4, we also observe that the UPA
achieves similar advantages over FIFO between message-
level scheduling and packet-level scheduling except for
linear TUFs. This means that, although the UPA is a packet
scheduler, the final result at the message-level is also good.
Moreover, since the UPA’s pseudoslope for linear TUFs is
actually the real TUF slope, it is not surprising that, for
linear TUFs and small message sizes, the UPA achieves the
best accrued utility, e.g., 38 times as that of FIFO.

Another interesting observation is that EDF_NDMC
presents almost no advantage over that of FIFO. This is not
surprising since, during overload situations, EDF_NDMC
does no deadline-miss checks. This wastes network band-
width similar to that of FIFO. But, the EDF-ordering wastes
more network bandwidth than that of FIFO due to the EDF’s
domino effect [22]. This explains why EDF_NDMCperforms
worse than FIFO.

This hypothesis is further validated by EDF_DMC’s
performance, which, to some extent, is close to that of the
UPA. Although EDF_DMC only does deadline-ordering, it
has a lesser cost than that of the UPA. This advantage of
EDF_DMC becomes significant when the UPA’s pseudo-
slope is not close to the real slope or when utility-ordering is
close to deadline-ordering.

Tables 5 and 6 show results for small message size and
the deterministic UAL and UAH maximum utility assign-
ments for step, soft-step, and quadratic TUFs, respectively.
The final utility results are better than small message size
and normal distribution utility cases, while, for linear TUFs,
the latter is much better than former.

We observed that the results for big message size and
UAH utility assignment-case is similar to that of small
message size and UAH maximum utility-case shown in
Table 6. So, those results are not shown. This demonstrates
the effectiveness of packets inheriting message TUFs.

10.3 Performance Comparison by Time-Utility
Function Types

The average aggregate utility of the four algorithms with
respect to FIFO under different TUFs are shown in Fig. 11.

From the figure, we observe that the TUF order where the
UPA performs the best to the worst when compared with
FIFO is: linear > soft-step > quadratic > step. From this
order, we conclude that closer the pseudoslope of the UPA
to the real TUF slope, greater the advantages the UPA has
over that of FIFO.

Another conclusion we draw is about the most favored
traffic types of the UPA under each TUF. For example,
we see from Fig. 11a that, when step TUF is used, the
UPA is good at traffic types T2, T3, and T4. Furthermore,
we observe that the UPA is good at traffic type T1 for
linear TUF, type T2 for soft-step TUF, and type T4 for
quadratic TUF.

We observed similar consistent results for the algorithms
for the deadline-miss ratio metric for different TUFs. So,
these are not shown. We observed that the UPA always
generates the smallest deadline-miss ratio. Furthermore,
among all TUFs for the UPA, the linear TUF gives the
smallest miss ratio. This is expected since the pseudoslope
of linear TUF is its actual slope.

10.4 Performance Comparison Based on Increasing
Traffic Arrival Density

All the performance comparisons described so far are based
on averaged results from tens of experiments. In order to
compare all four algorithms at a much finer level, we
repeated all individual experiments according to the
ascending order of traffic density.

In Fig. 12, we show the results for step TUF under traffic
type T3. We observed very similar results for step TUF
under all other traffic types. So, these are not shown. From
Fig. 12 and other similar measurements for traffic types T0,
T1, T2, and T4, we draw the following conclusions: First, we
conclude that the higher the traffic density, the more
advantages the UPA has over that of FIFO. This conclusion
is exactly the same as that obtained from our simulation
results. This also means that UPA is effective for overloads.

Second, we conclude that, when FIFO’s deadline-miss
ratio is small, the UPA’s and EDF’s deadline-miss ratios are
larger (than that of FIFO) due to their higher computational
cost. However, when FIFO’s deadline-miss ratio is large, the
computational overhead of the UPA and EDF is completely
traded off; thus, both the UPA and EDF achieve lower
deadline-miss ratio than FIFO, although the advantage of
EDF_NDMC over FIFO is quite small.

Third, we conclude that the UPA achieves the largest
aggregate utility except in very few special cases.
Furthermore, the UPA achieves the smallest deadline-miss
ratio in all cases.

Finally, we conclude that the accrued utility advantage of
the UPA over EDF_DMC is significant in some cases such
as under traffic types T2, T3 (shown in Fig. 12), and T4.
However, in some other cases, this advantage is not too
significant and, in yet other few cases, the advantage even
disappears. (We discuss the reasons for this in Section 10.2.)

We observed similar results for soft-step, linear, and
quadratic TUFs under all five traffic types. So, these are not
shown here. Thus, the actual performance measurements
clearly demonstrate the UPA’s superiority over the other
algorithms.

WANG AND RAVINDRAN: TIME-UTILITY FUNCTION-DRIVEN SWITCHED ETHERNET: PACKET SCHEDULING ALGORITHM,... 11

11 TIMELINESS FEASIBILITY CONDITIONS

We use a Systems Engineering (SE) approach in deriving

the UPA’s timeliness feasibility conditions. An SE problem

specifies the models and properties of a system that is

desired to be constructed [27]. Models are assumptions on

the operational conditions of the desired system. Properties

are desired services that the system must provide to end-

users. For a real-time system, the fundamental property is

timeliness.
A solution to an SE problem specifies the “blueprint” of

the desired system, i.e., the architectural and algorithmic

solutions that constitute the system. Furthermore, such a

system solution must deliver the desired properties under

the assumed models. For a real-time system, this is ensured

by timeliness feasibility conditions.
We first describe the models and properties. We then

derive the feasibility conditions. In describing the models,

we only augment our description in Section 3.

11.1 Models

The size n of the packet set P and the number of host

sources z are unrestricted. Further, we assume that the

packet subset Pj � P is mapped onto source sj 2 S; j 2 ½1; z�.
Furthermore, any packet pj 2 P may be mapped onto any

source sj 2 S.
Packets arrive according to the multimodal model [27],

which is a generalization of the unimodal model. For a

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

Fig. 12. Performance under traffic Type T3 for Step TUF. (a) Normalized aggregate utility and (b) deadline miss ratio.

Fig. 11. Average aggregate utility with respect to FIFO under five traffic types for different TUFs. (a) Step, (b) soft-step, (c) linear, (d) quadratic.

packet pi, the unimodal model defines the size of a sliding
time window wðpiÞ and the maximum number of arrivals
aðpiÞ that can occur during any wðpiÞ. Multimodal arrival
is a finite, ordered sequence of unimodal arrivals. Thus,
the sequence a�ðpiÞ; w�ðpiÞð Þ; � 2 ½1; k�h i; i 2 ½1; n� is de-
fined, where k is unrestricted.

Our motivation to consider the multimodal model is due
to the strength of the “adversary” embodied in the model,
i.e., the set of worst-case scenarios allowed by the model.
The “adversary” embodied in the multimodal model is
stronger than those in the unimodal, aperiodic, sporadic,
and periodic models [27]. The weaker the arrival model
(due to weakness in assumption), the greater is the
likelihood that the properties hold true.

The clock synchronization (clock-sync, for short) module
at hosts and switch periodically generate clock-sync
packets at a period �. Clock-sync packets are always
transmitted before transmitting application packets. The bit
length of a clock-sync packet at the data link layer is a
constant and is denoted bc. Physical framing overheads
increase this to b0c > bc.

11.2 Timeliness Property

The timeliness property is a desired lower bound on
system-wide, accrued utility, which is the sum of the utility
accrued by the arrival of packets at their destinations. Thus,
ATB ¼

Pn
i¼1 UiðtiÞ � ATBl, where ti is the absolute time at

which packet pi arrives at its destination. The functions
Ui; i 2 ½1; n� and the lower bound ATBl are unknown.

11.3 Construction of Timeliness

To establish the desired timeliness property, we need to
determine the worst-case lower bound on system-wide
accrued utility under the design models. This can be
determined by computing a lower bound on the individual
utility accrued by each packet. To determine such a lower
bound, we need to determine a packet delay-upper bound.
We thus seek to construct a computable function Rðsi; pÞ
that gives an upper bound on the delay incurred by any
packet p to arrive at its destination since its arrival at its
source host MAC-layer.

Since a packet will experience contention for two network
resources (in a single-segment switched network) once
it arrives at the MAC-layer of its source, we define
Rðsi; pÞ ¼ R1ðsi; pÞ þR2ðpÞ. R1ðsi; pÞ is the upper bound on
the delay incurred by any packet p to arrive at the switch
since its arrival at the MAC-layer of any source si; i 2 ½1; z�
and R2ðpÞ is the upper bound on the delay incurred by any
packet p to arrive at its destination since its arrival at the
switch.

11.3.1 Construction of R1ðsi; pÞ
Consider a packet p that arrives at the MAC-layer of a
source si. Let AðpÞ denote p’s arrival time, dðpÞ denote p’s
relative deadline, and IðpÞ denote the interval ½AðpÞ; AðpÞ
þ dðpÞ�. To determine R1ðsi; pÞ, we need to determine an
upper bound on the number of packets belonging to set Pi
that will be scheduled for outbound transmission on si, over
any interval IðpÞ, before p is transmitted.Wedenote this upper
bound as ui1 pð Þ. ui1 pð Þ must be established assuming that
packet arrivals occur at their bounded densities over all time
windows over IðpÞ.

Upper bound ui1 pð Þ. ui1 pð Þ is established by observing

that any application packet q will be scheduled by the UPA

on source si before packet p, only if q arrives no sooner than

AðpÞ � dðqÞ and no later than AðpÞ þ dðpÞ � b0ðpÞ
 . This is

because, if q were to arrive before AðpÞ � dðqÞ, then its

absolute deadline will occur before p’s arrival. Thus, when p

arrives, the UPA has either scheduled q or has dropped q

because it has become infeasible.

Similarly, if application packet q were to arrive after

AðpÞ þ dðpÞ � b0ðpÞ
 , then, at that time, the UPA would have

either scheduled p or has dropped p because it has become

infeasible. Note that q cannot be scheduled before p once p

has been scheduled and is in transmission (even if q were to

arrive before AðpÞ þ dðpÞ) since packet transmission is

nonpreemptive.

Note that, if q arrives after AðpÞ þ dðpÞ � dðqÞ but before
AðpÞ þ dðpÞ � b0ðpÞ

 , q’s absolute deadline will occur after

that of p. Under the EDF, q will then be scheduled after p

since q has a longer absolute deadline than that of p.

However, under the UPA, it is quite possible that q can be

scheduled before p. Thus, with the EDF, the latest arrival

time of q after which q cannot be scheduled before p will

occur at AðpÞ þ dðpÞ � dðqÞ; with the UPA, this will occur at

AðpÞ þ dðpÞ � b0ðpÞ
 .

Further, UPA will schedule a clock-sync packet q on si
before packet p only if q arrives no sooner than AðpÞ � b0ðcÞ

and no later than AðpÞ þ dðpÞ � b0ðpÞ
 . If q were to arrive

before AðpÞ � b0ðcÞ
 , then the maximum transmission time

that it needs will occur before p’s arrival. Thus, when p

arrives, UPA has already scheduled q for transmission.
Fig. 13 illustrates the packet interference situation under

UPA. It follows that:

ui1 pð Þ ¼
X
q2Pi

Xk
�¼1

d pð Þ þ d qð Þ � b0 pð Þ

h i
w� qð Þ

2
666

3
777a� qð Þ

þ
d pð Þ � b0 pð Þ

 þ b0ðcÞ

�

& ’
:

WANG AND RAVINDRAN: TIME-UTILITY FUNCTION-DRIVEN SWITCHED ETHERNET: PACKET SCHEDULING ALGORITHM,... 13

Fig. 13. Packet interference under the UPA.

Now, R1ðsi; pÞ is given by the sum of 1) the time needed

to physically transmit ui1 pð Þ packets at throughput and

2) the upper bounds on aggregate Worst-Case Execution

Times (WCETs) for the UPA to schedule ui1 pð Þ packets.

Given a WCET �h for the UPA at a host, R1ðsi; pÞ equals:

X
q2Pi

Xk
�¼1

d pð Þ þ d qð Þ � b0 pð Þ

h i
w� qð Þ

2
666

3
777a� qð Þ b

0 qð Þ

þ �h

� �

þ
d pð Þ � b0 pð Þ

 þ b0ðcÞ

�

& ’
b0c

þ �h

� �
:

11.3.2 Construction of R2ðpÞ
R2ðpÞ can be established similarly to R1ðsi; pÞ. The only

difference is that we need to consider all packets q that can

arrive from all sources such that they will contend for the

same outgoing network segment at the switch as p. Since

packet destinations are not specified in the models, we

consider all packets q 2 P .
Similarly to R1ðsi; pÞ, to determine R2ðpÞ, we need to

determine u2 pð Þ, i.e., an upper bound on the number of

packets belonging to set P that will be scheduled for

outbound transmission by the UPA on the switch over any

interval IðpÞ ¼ ½AðpÞ; AðpÞ þ dðpÞ�, where AðpÞ is packet p’s

arrival time at the switch MAC-layer and dðpÞ is its relative
deadline.

Upper bound u2 pð Þ. Upper bound u2 pð Þ is established by

observing that any application packet q will be scheduled by

the UPA on the switch before packet p only if q arrives no

sooner than AðpÞ � dðqÞ and no later than AðpÞ þ dðpÞ � b0ðpÞ
 .

Furthermore, any clock-sync packet q will be scheduled by

the UPA on the switch before packet p only if q arrives no

sooner than AðpÞ � b0ðcÞ
 and no later than AðpÞ þ dðpÞ � b0ðpÞ

 .

The rationale for these is exactly the same as that for

establishing the bound ui1 pð Þ. It follows that:

u2 pð Þ ¼
X
q2P

Xk
�¼1

d pð Þ þ d qð Þ � b0 pð Þ

h i
w� qð Þ

2
666

3
777a� qð Þ

þ
d pð Þ � b0 pð Þ

 þ b0ðcÞ

�

& ’
:

Now, R2ðpÞ is given by the sum of 1) the time needed to

physically transmit u2 pð Þ packets at throughput and 2) the

upper bounds on aggregate WCETs for the UPA to

schedule u2 pð Þ packets and for moving the packets (inside

the switch) from switch input port to output port. Given a

WCET and input-to-output port transfer time �s for the

UPA at the switch, R2 pð Þ equals:

X
q2P

Xk
�¼1

d pð Þ þ d qð Þ � b0 pð Þ

h i
w� qð Þ

2
666

3
777a� qð Þ b

0 qð Þ

þ �s

� �

þ
d pð Þ � b0 pð Þ

 þ b0ðcÞ

�

& ’
b0c

þ �s

� �
:

11.3.3 Feasibility Conditions

Thus, the conditions are ATB ¼
Pz

i¼1

P
pj2Pi Uj R si; pj

� �� �
� ATBl, where R si; pj

� �
¼ R1 si; pj

� �
þR2 pj

� �
. Now, to

dimension a system to an SE problem, an assignment of

values to unvalued variables in models and properties must

be made. Unvalued variables in models include:

1. number of packets n,
2. packet sizes bðpiÞ; i 2 ½1; n�,
3. number of sources z,
4. mappings Pj; j 2 ½1; z�,
5. number of arrival sequences k, and
6. arrival densities ða�ðpiÞ; w�ðpiÞÞ; � 2 ½1; k�h i; i 2 ½1; n�.

Unvalued variables in properties include TUFs Ui; i 2 ½1; n�
and utility lower bound ATBl.

The resulting quantified problem instance must then be
subject to feasibility analysis using the conditions. If a
feasible solution exists, a quantified system with values
assigned to unvalued variables in the solution including
network throughput and WCET/port-to-port transfer
times �h and �s can be obtained. Thus, the feasibility
conditions facilitate the design of TUF-driven switched
Ethernets with guaranteed soft timeliness properties.

12 CONCLUSIONS AND FUTURE WORK

Our main conclusion is that the UPA can achieve
significantly higher accrued utility than the CMA and
EDF for a broad set of TUFs. UPA’s advantage is significant
when the TUF pseudoslope used by the algorithm matches
the actual TUF slope. Thus, the algorithm performs the best
for linear TUFs, followed by soft-step and quadratic TUFs.
UPA’s performance is the least significant for step TUFs.
This is good news as TUFs such as linear, soft-step, and
quadratic are closest variants of realistic TUFs (e.g.,
AWACS).

The advantage of the UPA is also significant at larger
message traffic. At smaller traffic, when packet contention
for network segments is small, the algorithm has lesser
advantages due to its larger overhead compared with
simple algorithms such as FIFO. However, this is also good
news as supervisory real-time systems—our target systems
—are frequently subject to significant runtime increases in
message traffic.

Several aspects of the work are directions for further
research. The UPA’s timeliness feasibility conditions that
are presented here are sufficient, but not necessary. So, one
direction is to develop necessary and sufficient, tractable
feasibility conditions. Another interesting direction is to
extend the system model for multihop networks that
include multiple switches and routers, develop utility
accrual algorithms, and derive feasibility conditions.

ACKNOWLEDGMENTS

This work was supported by the US Office of Naval
Research under Grant N00014-99-1-0158 and N00014-00-1-
0549. The authors thank Peng Li and Dr. Douglas Jensen for
the many insightful discussions and the anonymous
reviewers for their helpful comments.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 1, JANUARY 2004

REFERENCES

[1] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C.
Senft, and R. Zainlinger, “Distributed Fault-Tolerant Real-Time
Systems: The Mars Approach,” IEEE Micro, vol. 9, no. 1, pp. 25-40,
Feb. 1989.

[2] C. Venkatramani and T.-C. Chiueh, “Supporting Real-Time Traffic
on Ethernet,” Proc. IEEE Real-Time Systems Symp., pp. 282-286,
Dec. 1994.

[3] D.W. Pritty, J.R. Malone, S.K. Banerjee, and N.L. Lawrie, “A Real-
Time Upgrade for Ethernet Based Factory Networking,” Proc.
IEEE/IECON Conf. Industrial Electronics, Control, and Instrumenta-
tion, pp. 1631-1637, 1995.

[4] W. Kim and J. Srivastava, “New Virtual Time CSMA/CD
Protocols for Real-Time Communication,” Proc. IEEE Conf. Comm.
for Distributed Applications and Systems, pp. 11-22, 1991.

[5] W. Zhao and K. Ramamritham, “A Virtual Time CSMA/CD
Protocol for Hard Real-Time Communication,” Proc. IEEE Real-
Time Systems Symp., pp. 120-127, Dec. 1986.

[6] M.N. El-Derini and M.R. El-Sakka, “A CSMA Protocol under a
Priority Time Constraint for Real-Time Communication,” Proc.
IEEE Workshop Future Trends of Distributed Computing Systems,
pp. 128-134, 1990.

[7] W. Zhao, J.A. Stankovic, and K. Ramamritham, “A Window
Protocol for Transmission of Time-Constrained Messages,” IEEE
Trans. Computers, vol. 39, no. 9, pp. 1186-1203, Sept. 1990.

[8] S.K. Kweon and K.G. Shin, “Achieving Real-Time Communication
over Ethernet with Adaptive Traffic Smoothing,” Proc. IEEE Real-
Time Technology and Applications Symp., pp. 90-100, 2000.

[9] J.-F. Hermant and G. LeLann, “A Protocol and Correctness Proofs
for Real-Time High-Performance Broadcast Networks,” Proc. IEEE
Conf. Distributed Computing Systems, pp. 360-369, 1998.

[10] D. Kim, Y. Doh, and Y. Lee, “Table Driven Proportional Access
Based Real-Time Ethernet for Safety-Critical Real-Time Systems,”
Proc. IEEE Pacific Rim Symp. Dependable Computing, pp. 356-363,
2001.

[11] S. Varadarajan and T.-C. Chiueh, “Ethereal: A Host-Transparent
Real-Time Fast Ethernet Switch,” Proc. IEEE Conf. Network
Protocols, pp. 12-21, Oct. 1998.

[12] SIXNET, “The Sixnet Industrial Ethernet Switch,” http://
www.sixnetio.com, Year?

[13] H. Hoang, M. Jonsson, U. Hagström, and A. Kallerdahl, “Switched
Real-Time Ethernet and Earliest Deadline First Scheduling-
Protocols and Traffic Handling,” Proc. IEEE Workshop Parallel
and Distributed Real-Time Systems, pp. 94-99, Apr. 2002.

[14] C. Baek-Young, S. Sejun, N. Birch, and J. Huang, “Probabilistic
Approach to Switched Ethernet for Real-Time Control Applica-
tions,” Proc. IEEE Conf. Real-Time Computing Systems and Applica-
tions, pp. 384-388, 2000.

[15] H. Zhang, “Service Disciplines for Guaranteed Performance
Service in Packet Switching Network,” Proc. IEEE, vol. 83, no. 10,
pp. 1374-1396, Oct. 1995.

[16] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, 1973.

[17] E.D. Jensen, “Asynchronous Decentralized Real-Time Computer
Systems,” Real-Time Computing, W.A. Halang and A.D. Stoyenko,
eds., NATO Advanced Study Inst., Oct. 1992.

[18] K. Chen and P. Muhlethaler, “A Scheduling Algorithm for Tasks
Described by Time Value Function,” J. Real-Time Systems, vol. 10,
no. 3, pp. 293-312, May 1996.

[19] E.D. Jensen, A. Kanevsky, J. Maurer, T. Wheeler, Y. Zhang, D.
Wells, T. Lawrence, and P. Hurley, “An Adaptive, Distributed
Airborne Tracking System,” Proc. IEEE Workshop Parallel and
Distributed Real-Time Systems, Apr. 1999.

[20] D.P. Maynard, S.E. Shipman, R.K. Clark, J.D. Northcutt, R.B.
Kegley, B.A. Zimmerman, and P.J. Keleher, “An Example Real-
Time Command, Control, and Battle Management Application for
Alpha,” technical report, Computer Science Dept., Carnegie
Mellon Univ., Dec. 1988, Archons Project Technical Report 88121.

[21] D.L. Mills, “Improved Algorithms for Synchronizing Computer
Network Clocks,” IEEE/ACM Trans. Networking, vol. 3, pp. 245-
254, June 1995.

[22] J.W.S. Liu, Real-Time Systems. Prentice Hall, 2000.
[23] ZNYX Networks, “Zx340q Series,” http://www.znyx.com/

products/netblaster/zx340q.htm, Year?
[24] D. Mills, “xntpd,” http://www.eecis.udel.edu/ntp/database/

html_xntp3-5.90/xntpd.html, Year?

[25] U. Böhme and L. Buytenhenk, “Linux bridge-stp-howto,” http://
www.tldp.org/HOWTO/BRIDGE-STP-HOWTO, Year?

[26] J. Wang, “Soft Real-Time Switched Ethernet: Best-Effort Packet
Scheduling Algorithm, Implementation, and Feasibility Analysis,”
master’s thesis, Virginia Tech., Sept. 2002.

[27] G. LeLann, “Proof-Based System Engineering and Embedded
Systems,” Lecture Notes in Computer Science, G. Rozenberg and F.
Vaandrager, eds., vol. 1494, pp. 208-248, Oct. 1998.

Jinggang Wang received the BS degree from
Beijing University of Aeronautics and Astronau-
tics (BUAA), China, in 1992, and the MS degree
from the Virginia Polytechnic Institute and State
University, in 2002, both in electrical engineer-
ing. Previously, he was employed by Industrial
and Commercial Bank of China (ICBC), Huiz-
hou, China, where he developed and managed
several large-scale, commercial software pro-
jects. Currently, he is a senior software engineer

with the Embedded System Division, Casabyte Inc., a company that
focuses on world-wide 3G wireless network QoS. His research interests
include resource management in wireless network and embedded
mobile systems, embedded real-time operating systems, real-time
networking, and self-driven computing.

Binoy Ravindran received the master’s degree
from the New Jersey Institute of Technology
(NJIT) in 1994 and the PhD degree from the
University of Texas at Arlington (UT Arlington) in
1998, both in computer science. He is an
assistant professor in the Bradley Department
of Electrical and Computer Engineering at
Virginia Tech, Blacksburgh. He received two
“Student Achievement Awards” from NJIT for
outstanding research by a graduate student

(1994, 1995) and a “Doctoral Dissertation Award” from UT Arlington
for outstanding doctoral research (1998). His current research focus
includes real-time distributed systems having application-level, end-to-
end quality of services (e.g., timeliness, survivability, security). Recent
sponsors of Dr. Ravindran’s research include The MITRE Corporation,
US Office of Naval Research, and NASA. During 1999, he was an
invited speaker at INRIA, France, and at the ARTES (Swedish National
Strategic Research Initiative in Real-Time Systems) Real-Time Week,
Sweden. He served as the program chair of the 1999 IEEE International
Workshop on Parallel and Distributed Real-Time Systems. Dr. Ravin-
dran was a coguest editor for IEEE Transactions on Computers (2002)
for a special issue on “asynchronous real-time distributed systems.” He
is a member of the IEEE and the IEEE Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

WANG AND RAVINDRAN: TIME-UTILITY FUNCTION-DRIVEN SWITCHED ETHERNET: PACKET SCHEDULING ALGORITHM,... 15

